
Lee, N
g

uyen
&

 Thom
a

s

 Graph-Powered
 Analytics and
Machine Learning
 with TigerGraph
Driving Business Outcomes with Connected Data

Victor Lee,
Phuc Kien Nguyen &

Alexander Thomas

Compliments of

MACHINE LE ARNING

Graph-Powered Analytics and
Machine Learning with TigerGraph

Twitter: @oreillymedia
linkedin.com/company/oreilly-media
youtube.com/oreillymedia

With the rapid rise of graph databases, organizations
are now implementing advanced analytics and machine
learning solutions to help drive business outcomes. This
practical guide shows data scientists, data engineers,
architects, and business analysts how to get started with
a graph database using TigerGraph, one of the leading
graph database models available.

You’ll explore a three-stage approach to deriving value
from connected data: connect, analyze, and learn. Victor
Lee, Phuc Kien Nguyen, and Alexander Thomas present
real use cases covering several contemporary business
needs. By diving into hands-on exercises using TigerGraph
Cloud, you’ll quickly become proficient at designing and
managing advanced analytics and machine learning solutions
for your organization.

•	 Use graph thinking to connect, analyze, and learn from
data for advanced analytics and machine learning

•	 Learn how graph analytics and machine learning can
deliver key business insights and outcomes

•	 Use five core categories of graph algorithms to drive
advanced analytics and machine learning

•	 Deliver a real-time, 360-degree view of core business
entities including customer, product, service, supplier,
and citizen

•	 Discover insights from connected data through machine
learning and advanced analytics

Victor Lee is vice president of machine
learning and AI at TigerGraph.

Phuc Kien Nguyen is a data scientist
in the field of anti-money laundering
and terrorist financing at ABN
AMRO Bank.

Alexander Thomas is a former
TigerGraph technical writer with
a background in linguistics and
education.

US $65.99	 CAN $82.99
ISBN: 978-1-098-10665-2

Lee, N
g

uyen
&

 Thom
a

s

ISBN: 978-1-098-10666-9

https://www.tigergraph.com/cloud

Victor Lee, Phuc Kien Nguyen, and Alexander Thomas

Graph-Powered Analytics and
Machine Learning with TigerGraph
Driving Business Outcomes with Connected Data

Boston Farnham Sebastopol TokyoBeijing Boston Farnham Sebastopol TokyoBeijing

978-1-098-10666-9

[LSI]

Graph-Powered Analytics and Machine Learning with TigerGraph
by Victor Lee, Phuc Kien Nguyen, and Alexander Thomas

Copyright © 2023 O’Reilly Media. All rights reserved.

Printed in the United States of America.

Published by O’Reilly Media, Inc., 1005 Gravenstein Highway North, Sebastopol, CA 95472.

O’Reilly books may be purchased for educational, business, or sales promotional use. Online editions are
also available for most titles (http://oreilly.com). For more information, contact our corporate/institutional
sales department: 800-998-9938 or corporate@oreilly.com.

Acquisitions Editor: Nicole Butterfield
Development Editor: Gary O’Brien
Production Editor: Jonathon Owen
Copyeditor: nSight, Inc.
Proofreader: Shannon Turlington

Indexer: BIM Creatives, LLC
Interior Designer: David Futato
Cover Designer: Karen Montgomery
Illustrator: Kate Dullea

July 2023: First Edition

Release History for the First Edition
2023-07-21: First Release

See http://oreilly.com/catalog/errata.csp?isbn=9781098106652 for release details.

The O’Reilly logo is a registered trademark of O’Reilly Media, Inc. Graph-Powered Analytics and Machine
Learning with TigerGraph, the cover image, and related trade dress are trademarks of O’Reilly Media, Inc.

The views expressed in this work are those of the authors, and do not represent the publisher’s views.
While the publisher and the authors have used good faith efforts to ensure that the information and
instructions contained in this work are accurate, the publisher and the authors disclaim all responsibility
for errors or omissions, including without limitation responsibility for damages resulting from the use
of or reliance on this work. Use of the information and instructions contained in this work is at your
own risk. If any code samples or other technology this work contains or describes is subject to open
source licenses or the intellectual property rights of others, it is your responsibility to ensure that your use
thereof complies with such licenses and/or rights.

This work is part of a collaboration between O’Reilly and TigerGraph. See our statement of editorial
independence.

http://oreilly.com
http://oreilly.com/catalog/errata.csp?isbn=9781098106652
https://oreil.ly/editorial-independence
https://oreil.ly/editorial-independence

Table of Contents

Preface. xi

1. Connections Are Everything. 1
Connections Change Everything 2

What Is a Graph? 2
Why Graphs Matter 3
Edges Outperform Table Joins 5

Graph Analytics and Machine Learning 9
Graph-Enhanced Machine Learning 9

Chapter Summary 10

Part I. Connect

2. Connect and Explore Data. 15
Graph Structure 16

Graph Terminology 16
Graph Schemas 22

Traversing a Graph 24
Hops and Distance 24
Breadth and Depth 25

Graph Modeling 25
Schema Options and Trade-Offs 26
Transforming Tables in a Graph 30
Model Evolution 32

Graph Power 33
Connecting the Dots 33
The 360 View 34

v

Looking Deep for More Insight 35
Seeing and Finding Patterns 37
Matching and Merging 39
Weighing and Predicting 40

Chapter Summary 41

3. See Your Customers and Business Better: 360 Graphs. 43
Case 1: Tracing and Analyzing Customer Journeys 43
Solution: Customer 360 + Journey Graph 44
Implementing the C360 + Journey Graph: A GraphStudio Tutorial 47

Create a TigerGraph Cloud Account 48
Get and Install the Customer 360 Starter Kit 48
An Overview of GraphStudio 51
Design a Graph Schema 51
Data Loading 54
Queries and Analytics 55

Case 2: Analyzing Drug Adverse Reactions 67
Solution: Drug Interaction 360 Graph 68
Implementation 68

Graph Schema 69
Queries and Analytics 70

Chapter Summary 77

4. Studying Startup Investments. 79
Goal: Find Promising Startups 79
Solution: A Startup Investment Graph 80
Implementing a Startup Investment Graph and Queries 81

The Crunchbase Starter Kit 81
Graph Schema 82
Queries and Analytics 83

Chapter Summary 99

5. Detecting Fraud and Money Laundering Patterns. 101
Goal: Detect Financial Crimes 101
Solution: Modeling Financial Crimes as Network Patterns 102
Implementing Financial Crime Pattern Searches 103

The Fraud and Money Laundering Detection Starter Kit 103
Graph Schema 103
Queries and Analytics 104

Chapter Summary 115

vi | Table of Contents

Part II. Analyze

6. Analyzing Connections for Deeper Insight. 119
Understanding Graph Analytics 119

Requirements for Analytics 120
Graph Traversal Methods 120
Parallel Processing 122
Aggregation 122

Using Graph Algorithms for Analytics 123
Graph Algorithms as Tools 123
Graph Algorithm Categories 125

Chapter Summary 145

7. Better Referrals and Recommendations. 147
Case 1: Improving Healthcare Referrals 147
Solution: Form and Analyze a Referral Graph 148
Implementing a Referral Network of Healthcare Specialists 149

The Healthcare Referral Network Starter Kit 149
Graph Schema 149
Queries and Analytics 151

Case 2: Personalized Recommendations 160
Solution: Use Graph for Multirelationship-Based Recommendations 161
Implementing a Multirelationship Recommendation Engine 162

The Recommendation Engine 2.0 Starter Kit 162
Graph Schema 162
Queries and Analytics 164

Chapter Summary 172

8. Strengthening Cybersecurity. 175
The Cost of Cyberattacks 175
Problem 177
Solution 177
Implementing a Cybersecurity Graph 178

The Cybersecurity Threat Detection Starter Kit 178
Graph Schema 178
Queries and Analytics 180

Chapter Summary 190

9. Analyzing Airline Flight Routes. 191
Goal: Analyzing Airline Flight Routes 191
Solution: Graph Algorithms on a Flight Route Network 192
Implementing an Airport and Flight Route Analyzer 193

Table of Contents | vii

The Graph Algorithms Starter Kit 193
Graph Schema and Dataset 193
Installing Algorithms from the GDS Library 194
Queries and Analytics 195

Chapter Summary 207

Part III. Learn

10. Graph-Powered Machine Learning Methods. 211
Unsupervised Learning with Graph Algorithms 213

Learning Through Similarity and Community Structure 213
Finding Frequent Patterns 214

Extracting Graph Features 215
Domain-Independent Features 216
Domain-Dependent Features 222
Graph Embeddings: A Whole New World 225

Graph Neural Networks 235
Graph Convolutional Networks 235
GraphSAGE 240

Comparing Graph Machine Learning Approaches 242
Use Cases for Machine Learning Tasks 243
Pattern Discovery and Feature Extraction Methods 244
Graph Neural Networks: Summary and Uses 244

Chapter Summary 245

11. Entity Resolution Revisited. 247
Problem: Identify Real-World Users and Their Tastes 247
Solution: Graph-Based Entity Resolution 249

Learning Which Entities Are the Same 249
Resolving Entities 250

Implementing Graph-Based Entity Resolution 251
The In-Database Entity Resolution Starter Kit 251
Graph Schema 251
Queries and Analytics 253
Method 1: Jaccard Similarity 254
Merging 261
Method 2: Scoring Exact and Approximate Matches 265

Chapter Summary 273

12. Improving Fraud Detection. 275
Goal: Improve Fraud Detection 275

viii | Table of Contents

Solution: Use Relationships to Make a Smarter Model 276
Using the TigerGraph Machine Learning Workbench 277

Setting Up the ML Workbench 277
Working with ML Workbench and Jupyter Notes 279
Graph Schema and Dataset 280
Graph Feature Engineering 282
Training Traditional Models with Graph Features 283
Using a Graph Neural Network 286

Chapter Summary 289
Connecting with You 289

Index. 291

Table of Contents | ix

Preface

Objectives
The goal of this book is to introduce you to the concepts, techniques, and tools for
graph data structures, graph analytics, and graph machine learning. When you’ve
finished the book, we hope you’ll understand how graph analytics can be used to
address a range of real-world problems. We want you to be able to answer questions
like the following: Is graph a good fit for this task? What tools and techniques should
I use? What are the meaningful relationships in my data, and how do I formulate a
task in terms of relationship analysis?

In our experience, we see that many people quickly grasp the general concept and
structure of graphs, but it takes more effort and experience to “think graph,” that
is, to develop the intuition for how best to model your data as a graph and then to
formulate an analytical task as a graph query. Each chapter begins with a list of its
objectives. The objectives fall into three general areas: learning concepts about graph
analytics and machine learning; solving particular problems with graph analytics;
and understanding how to use the GSQL query language and the TigerGraph graph
platform.

Audience and Prerequisites
We designed this book for anyone who has an interest in data analytics and wants
to learn about graph analytics. You don’t need to be a serious programmer or a data
scientist, but some exposure to databases and programming concepts will definitely
help you to follow the presentations. When we go into depth on a few graph algo‐
rithms and machine learning techniques, we present some mathematical equations
involving sets, summation, and limits. Those equations, however, are a supplement to
our explanations with words and figures.

In the use case chapters, we will be running prewritten GSQL code on the TigerGraph
Cloud platform. You’ll just need a computer and internet access. If you are familiar

xi

with the SQL database query language and any mainstream programming language,
then you will be able to understand much of the GSQL code. If you are not, you
can simply follow the instructions and run the prewritten use case examples while
following along with the commentary in the book.

Approach and Roadmap
We aim to present the material as motivated by real-world data analytics needs, as
opposed to theoretical principles. We always try to explain things in the simplest
terms we can, using everyday concepts instead of technical jargon.

The GSQL language is introduced through complete examples. Early in the book, we
provide line-by-line descriptions of the purpose and function of each line. We also
highlight language structures, syntax, and semantics that are particularly important.
For a comprehensive tutorial to GSQL, you can refer to additional resources beyond
this book.

This book is structured as three parts: Part I: Connect; Part II: Analyze; and Part III:
Learn. Each part has two types of chapters. The first is a concept chapter, followed by
two or three chapters of use cases on TigerGraph Cloud and GSQL.

Chapter Format Title
1 Introduction Connections Are Everything

Part I: Connect
2 Concept Connect and Explore Data
3 Use Case, Introduction to TigerGraph See Your Customers and Business Better: 360 Graphs
4 Use Case Studying Startup Investments
5 Use Case Detecting Fraud and Money Laundering Patterns

Part II: Analyze
6 Concept Analyzing Connections for Deeper Insight
7 Use Case Better Referrals and Recommendations
8 Use Case Strengthening Cybersecurity
9 Use Case Analyzing Airline Flight Routes

Part III: Learn
10 Concept Graph-Powered Machine Learning Methods
11 Use Case Entity Resolution Revisited
12 Use Case, Introduction to Machine Learning Workbench Improving Fraud Detection

xii | Preface

Conventions Used in This Book
The following typographical conventions are used in this book:

Italic
Indicates new terms, URLs, email addresses, filenames, and file extensions.

Constant width

Used for program listings, as well as within paragraphs to refer to program
elements such as variable or function names, databases, data types, environment
variables, statements, and keywords.

Constant width bold

Indicates vertex or edge types.

This element signifies a tip or suggestion.

This element signifies a general note.

This element indicates a warning or caution.

Using Code Examples
This book has its own GitHub repository at https://github.com/TigerGraph-DevLabs/
Book-graph-powered-analytics.

The initial content for this site will be copies of all the use case examples. We
will also gather the book’s GSQL tips into a single document as a primer. As we
receive feedback from readers (and we hope to hear from you!), we’ll post answers to
frequently asked questions. We’ll also add additional or modified GSQL examples or
point out how you can take advantage of new capabilities in the TigerGraph platform.

Preface | xiii

https://github.com/TigerGraph-DevLabs/Book-graph-powered-analytics
https://github.com/TigerGraph-DevLabs/Book-graph-powered-analytics

For additional resources on TigerGraph and the GSQL language, the most compre‐
hensive material will be found through TigerGraph’s main website (https://www.tiger
graph.com), its documentation site (https://docs.tigergraph.com), or its YouTube
channel (https://www.youtube.com/@TigerGraph).

You can contact the authors at gpaml.book@gmail.com.

O’Reilly Online Learning
For more than 40 years, O’Reilly Media has provided technol‐
ogy and business training, knowledge, and insight to help
companies succeed.

Our unique network of experts and innovators share their knowledge and expertise
through books, articles, and our online learning platform. O’Reilly’s online learning
platform gives you on-demand access to live training courses, in-depth learning
paths, interactive coding environments, and a vast collection of text and video from
O’Reilly and 200+ other publishers. For more information, visit https://oreilly.com.

How to Contact Us
Please address comments and questions concerning this book to the publisher:

O’Reilly Media, Inc.
1005 Gravenstein Highway North
Sebastopol, CA 95472
800-889-8969 (in the United States or Canada)
707-829-7019 (international or local)
707-829-0104 (fax)
support@oreilly.com
https://www.oreilly.com/about/contact.html

We have a web page for this book, where we list errata, examples, and any additional
information. You can access this page at https://oreil.ly/gpaml.

For news and information about our books and courses, visit https://oreilly.com.

Find us on LinkedIn: https://linkedin.com/company/oreilly-media

Follow us on Twitter: https://twitter.com/oreillymedia

Watch us on YouTube: https://youtube.com/oreillymedia

xiv | Preface

https://www.tigergraph.com
https://www.tigergraph.com
https://docs.tigergraph.com
https://www.youtube.com/@TigerGraph
mailto:gpaml.book@gmail.com
https://oreilly.com
https://oreilly.com
mailto:support@oreilly.com
https://www.oreilly.com/about/contact.html
https://oreil.ly/gpaml
https://oreilly.com
https://linkedin.com/company/oreilly-media
https://twitter.com/oreillymedia
https://youtube.com/oreillymedia

Acknowledgments
This book would not exist without Gaurav Deshpande, TigerGraph’s VP of market‐
ing, who proposed that we should and could write it. He wrote the original proposal
and chapter outline; the three-part structure is his idea. Thank you to TigerGraph’s
CEO and Founder Dr. Yu Xu, who supported our effort and who granted us the
flexibility to work on this project. Dr. Xu also envisioned GraphStudio and its Starter
Kits. Mingxi Wu and Alin Deutsch developed the GSQL language with efficient graph
analytics in mind.

Besides the official authors, several others contributed to the material in this book.
Tom Reeve applied his professional writing skills and knowledge of graph concepts
to help us write Chapter 2, when writer’s block and procrastination seemed to be
our biggest foe. Emily McAuliffe and Amanda Morris designed several of the figures
in the Early Release edition of the book. We needed some data scientists to review
our chapters on machine learning. We turned to Parker Erickson and Bill Shi, who
not only are experts in graph machine learning but developed the TigerGraph ML
Workbench.

We are indebted to Xinyu Chang, TigerGraph’s original GSQL query and solutions
expert, for developing or overseeing the development of many of the use case starter
kits and graph algorithm implementations in this book. Yiming Pan also wrote or
optimized several graph algorithms and queries. Many of the book’s examples are
based on designs that they developed for TigerGraph’s customers. The schemas,
queries, and output displays in those starter kits are just as much a part of the content
of this book as are the English paragraphs. We made several improvements to the
starter kits to adapt them for this book. A number of people helped with reviewing
and standardizing the starter kits: Jon Herke, head of developer relations; and several
TigerGraph interns: Abudula Aisikaer, Shreya Chaudhary, McKenzie Steenson, and
Kristine Zheng. Renchu Song and Duc Le, who lead the design and development
of TigerGraph Cloud and GraphStudio, made sure that our revised starter kits were
released into the product.

A million thanks to our two development editors at O’Reilly. Nicole Taché showed
us the ropes and got us to our first early release of two chapters, with insightful
comments, advice, and encouragement for this project. Gary O’Brien steered us from
there to completion, through thick and thin. Both are wonderful editors, who were
a pleasure and an honor to work with. Thank you also to our production editor
Jonathon Owen and copyeditor Adam Lawrence.

Victor would like to thank his parents George and Sylvia Lee for their tireless support
of his academic and nonacademic pursuits. He would like to thank his wife Susan
Haddox for always being there for him, for putting up with his writing late into the

Preface | xv

night, for watching any and all Star Trek with him, and for being his model for how a
person can be wicked smart and kind and funny.

Kien would like to thank his mother, My Linh Ly, for being a constant source of
inspiration and a driving force for his career. He is also thankful for his wife, Sammy
Wai-lok Lee, who has always been there with him, giving color to his life and caring
for him and their baby girl Liv Vy Ly Nguyen-Lee, who was born during the writing
of this book.

Alex would like to thank his parents, Chris and Becky Thomas, and his sister, Ari, for
their support and encouragement as discussion partners during the writing process.
Special thanks goes to his wife Gloria Zhang for her incredible strength, her vast
intelligence, and her limitless capability for inspiration.

xvi | Preface

1 “Killer Application,” Wikipedia, last updated May 14, 2023, https://en.wikipedia.org/wiki/Killer_application.

CHAPTER 1

Connections Are Everything

In an extreme view, the world can be seen as only connections, nothing else. We think of a
dictionary as the repository of meaning, but it defines words only in terms of other words.
I liked the idea that a piece of information is really defined only by what it’s related to, and
how it’s related. There really is little else to meaning. The structure is everything.

—Tim Berners-Lee, Weaving the Web: The Original Design and Ultimate Destiny of the
World Wide Web (1999), p. 14

The 20th century demonstrated how much we could achieve with spreadsheets and
relational databases. Tabular data ruled. The 21st century has already shown us that
that isn’t enough. Tables flatten our perspective, showing connections in only two
dimensions. In the real world, things are related to and connected to a myriad of
other things, and those relationships shape what is and what will happen. To gain full
understanding, we need to model these connections.

Personal computers were introduced in the 1970s, but they didn’t take off until they
found their first killer apps: financial spreadsheets. VisiCalc on the Apple II and then
Lotus 1-2-3 on the IBM PC1 automated the laborious and error-prone calculations
that bookkeepers had been doing by hand ever since the invention of writing and
arithmetic: adding up rows and columns of figures, and then perhaps performing
even more complex statistical calculations.

In 1970, E. F. Codd published his seminal paper on the relational database model.
In these early days of databases, a few models were bouncing around, including
the network database model. Codd’s relational model was built on something that
everyone could identify with and was easy to program: the table.

1

https://en.wikipedia.org/wiki/Killer_application

Moreover, matrix algebra and many statistical methods are also ready-made to work
with tables. Both physicists and business analysts used matrices to define and find
the optimal solutions to everything from nuclear reactor design to supply chain man‐
agement. Tables lend themselves to parallel processing; just partition the workload
vertically or horizontally. Spreadsheets, relational databases, and matrix algebra: the
tabular approach seemed to be the solution to everything.

Then the World Wide Web happened, and everything changed.

Connections Change Everything
The web is more than the internet. The internet began in the early 1970s as a data
connection network between selected US research institutions. The World Wide Web,
invented by CERN researcher Tim Berners-Lee in 1989, is a set of technologies run‐
ning on top of the internet that make it much easier to publish, access, and connect
data in a format easy for humans to consume and interact with. Browsers, hyperlinks,
and web addresses are also hallmarks of the web. At the same time that the web
was being developed, governments were loosening their controls on the internet and
allowing private companies to expand it. We now have billions of interconnected
web pages, connecting people, multimedia, facts, and opinions at a truly global scale.
Having data isn’t enough. How the data is structured matters.

What Is a Graph?
As the word “web” started to take on new connotations, so did the word “graph.” For
most people, “graph” was synonymous with a line chart that could show something
such as a stock’s price over time. Mathematicians had another meaning for the word,
however, and as networks and connections started to matter to the business world,
the mathematical meaning started to come to the fore.

A graph is an abstract data structure consisting of vertices (or nodes) and connections
between vertices called edges. That’s it. A graph is the idea of a network, constructed
from these two types of elements. This abstraction allows us to study networks (or
graphs) in general, to discover properties, and to devise algorithms to solve general
tasks. Graph theory and graph analytics provided organizations with the tools they
needed to leverage the sudden abundance of connected data.

In Figure 1-1, we can see the network of relationships between the actors and direc‐
tors of Star Wars (1977) and The Empire Strikes Back (1980). This is easily modelable
as a graph with different types of edges connecting the different types of vertices.
Actors and movies can have an acted_in vertex connecting them, movies and other
movies can be connected by an is_sequel_of vertex, and movies and directors can
have a directed_by edge connection.

2 | Chapter 1: Connections Are Everything

Figure 1-1. A graph showing some key players and connections in early Star Wars films

Why Graphs Matter
The web showed us that sometimes we accomplish more by having varied data that is
linked together than by trying to merge it all into a few rigid tables. It also showed us
that connections themselves are a form of information. We have a limitless number of
types of relationships: parent–child, purchaser–product, friend–friend, and so on. As
Berners-Lee observed, we get meaning from connections. When we know someone
is a parent, we can infer that they have had certain life experiences and have certain
concerns. We can also make informed guesses at how the parent and child will
interact relative to each other.

The web, however, only highlighted what has always been true: data relationships
matter when representing data and when analyzing data. Graphs can embody the
informatiooonal content of relationships better than tables. This enriched data for‐
mat is better at representing complex information, and when it comes to analytics,
it produces more insightful results. Business-oriented data analysts appreciate the
intuitive aspect of seeing relationships visualized as a graph, and data scientists find
that the richer content yields more accurate machine learning models. As a bonus,
graph databases often perform faster than relational databases when working on tasks
involving searching multiple levels of connections (or multiple hops).

Structure matters
The founders of Google recognized that the web would become too large for anyone
to grasp. We would need tools to help us search for and recommend pages. A key
component of Google’s early success was PageRank, an algorithm that models the

Connections Change Everything | 3

internet as a set of interconnected pages and decides which are the most influential or
authoritative pages—based solely on their pattern of interconnection.

Over the years, search engines have become better and better at inferring from our
queries what we would really like to know and would find useful. One of Google’s
tools for that is its Knowledge Graph, an interconnected set of categorized and
tagged facts and concepts, harvested from the broader web. After analyzing the
user’s query to understand not just the surface words but the implied categories and
objectives, Google searches its Knowledge Graph to find the best matching facts and
then presents them in a well-formatted sidebar. Only a graph has the flexibility and
expressiveness to make sense of this universe of facts.

Communities matter
Facebook started as a social networking app for college students; it’s grown to become
the world’s largest online social network. It’s self-evident that Facebook cares about
networks and graphs. From each user’s perspective, there is oneself and one’s set
of friends. Though we act individually, people will naturally tend to gather into
communities that evolve and have influence as though they were living entities them‐
selves. Communities are powerful influences on what information we receive and
how we form opinions. Businesses leverage community behavior for promoting their
products. People also use social networks to promote political agendas. Detecting
these communities is essential to understand the social dynamics, but you won’t see
the communities in a tabular view.

Patterns of connections matter
The same information can be presented either in tabular form or in graph form,
but the graph form shows us things that the table obscures. Think of a family tree.
We could list all the parent–child relationships in a table, but the table would miss
important patterns that span multiple relationships: family, grandchildren, cousins.

A less obvious example is a graph of financial transactions. Financial institutions and
vendors look for particular patterns of transactions that suggest possible fraudulent
or money laundering activity. One pattern is a large amount of money being transfer‐
red from party to party, with a high percentage of the money coming back to the
origin: a closed loop. Figure 1-2 shows such loops, extracted from a graph database
containing millions of transactions, from our financial fraud example in Chapter 5.
Other patterns can be linear or Y-shaped; anything is possible. The pattern depends
on the nature of the data and the question of interest.

4 | Chapter 1: Connections Are Everything

Figure 1-2. Graph search results showing sequences of transactions in a closed loop (see a
larger version of this figure at https://oreil.ly/gpam0102)

Patterns can depend not only on the shape but on the type of vertex and type of edge.
Figure 1-2 has two types of vertices: Accounts and Transactions (yes, the Transactions
are vertices, not the edges). If we chose, we could separate Person and Account into
separate entities. A person can be associated with multiple accounts. Breaking it up
like this enables us to analyze the behavior of a Person, not just an Account. Modeling
important concepts as vertex types enables richer search analytical capability, as we
will see in later chapters.

Edges Outperform Table Joins
It’s true that you can represent vertices as tables and edges as tables. What is actually
different about a graph, and why do we claim it is faster for multihop operations?
First of all, the graph is not just the visualization. We visualize data for human
convenience, but the computer doesn’t need this visual aspect at all.

The performance advantage of graphs comes down to the mechanics of how search‐
ing for and utilizing connections actually takes place in a relational database versus a
graph database. In a relational database, there is no link between tables until you run
a query. Yes, if you have declared and enforced a foreign key in one table to reference
another table, then you know that the foreign key column’s value will correspond to a

Connections Change Everything | 5

https://oreil.ly/gpam0102

primary key value in its related table. That just means that two different tables store
duplicate data, but you still have to seek out those matching records.

Consider a simple database that tracks purchases by customers. We have three tables:
Person, Item, and Purchases, shown in Figure 1-3. Suppose we want to know all the
purchases that Person B has made. The Purchases table is organized by date, not by
Person, so it seems we need to scan the entire table to find Person B’s purchases. For
large databases, this is very inefficient.

Figure 1-3. Relational table structure for Person-Purchases-Item database

This is a common problem, so relational databases have created a solution: secondary
indexes. Just like a reference book’s index can tell you the page numbers of where
certain key topics appear, a table index tells you the row address where certain
column values appear. Figure 1-4 sketches out the idea of indexes for the PID (Person
ID) and IID (Item ID) columns of the Purchases table. Great, now we know Person
B’s purchases are listed in rows 4, 6, 8, and 10 of the table. There are still some
trade-offs, however. It takes time and storage space to create an index and then to
maintain it as the database evolves, and it is still an extra step to go to the index rather
than going directly to the data rows that have what you want. The index itself is a
table. How quickly can we find Person B among all the persons?

6 | Chapter 1: Connections Are Everything

Without index:

1. Read each row in Purchases table (slow and not scalable).1.

With index:

1. Go to a secondary index for the Purchases table.1.
2. Find the row of interest (could be fast).2.
3. Use the index.3.

Figure 1-4. Secondary indexes for Purchases table

A graph database or graph analytics platform eliminates the problem of searching
through tables and building indexes in order to find connections: the connections are
already there.

In a graph, an edge points directly to its endpoint vertices. There is no need to read
through a table, and there is no need to build an extra indexing structure. While
the speed difference may be modest for one connection, a graph can be hundreds of
times faster when you want to repeat this across a chain of connections and when you
need to join many data records, such as entire tables. For example, suppose we want
to answer this question: “Find the items that were purchased by persons who also
bought the item that you just bought.” Figure 1-5 displays exactly this, where “you”
are Person A:

Connections Change Everything | 7

1. Person A bought Item 1.1.
2. Persons B, C, and D also bought Item 1.2.
3. Persons B, C, and D also bought Items 2, 3, 4, and 5.3.

Figure 1-5. Graph structure for Person-Purchases-Item database

This is a three-hop query—pretty simple for a graph. We traverse a total of 9 vertices
and 11 edges to answer this question.

In a table-based system, this would take three table joins. Good query optimization
and indexing will reduce the amount of work so that it comes close to the very
efficient graph model, but at the cost of going back and forth between the data tables
and the indexes and performing the index lookups. The graph doesn’t need indexes
for this query because the connections are already built-in and optimized.

One cautionary note: the full performance benefit is only realized on “native” graphs,
which are designed from the ground up to be graphs. It is possible to build a graph
system on top of a tabular database. That combination will function like a graph but
will not perform like one.

8 | Chapter 1: Connections Are Everything

Graph Analytics and Machine Learning
Perhaps the biggest benefit of graph-structured data is how it can improve analytics
results and performance. We gather and store data for many reasons. Sometimes all
we want to do is to recall a particular bit of information exactly as it was recorded
before. For example, a credit card company records each of your transactions. Each
month, it sends you a statement that lists each of your transactions and payments.
Data tables are sufficient for this simple listing and summing.

Businesses these days need to do more with the data than just these baseline tasks.
They need to find and capture more revenue opportunities, cut losses from fraud
and waste, and reduce risk. Seeing patterns in their data can help with all these
needs. For example, what is your credit card spending pattern over time? Can they
categorize you with other persons with similar patterns? How can the business
use social network relationships to serve its interests, such as promoting business
through recommendations or predicting behavior based on family connections? The
business has customer information from multiple sources. Data differences such as
typos, differences in allowed characters, name or address changes, and customers’
intentional use of different online personae can make them seem like multiple differ‐
ent persons. Can the business use analytics to detect and integrate these records? Are
you committing card fraud, or has someone stolen your card number?

Analysis is about seeing patterns. Patterns are collections of relationships structured
in a certain way, which is also exactly what graphs are. A pattern can have both
structural and quantitative aspects, such as “the average household has 1.4 pets.” The
structural part (the housing relationships that define a household, and the relation‐
ship between certain animals and households) can be encoded as a graph pattern
query. Graph databases and graph analytics platforms can do quantitative analysis,
too, of course. Part 2 of this book will help you to understand and apply graph
analytics.

Graph-Enhanced Machine Learning
Machine learning is using past data to detect a pattern that might help us predict
future activity. Since graphs are the natural way to represent, store, and analyze
patterns, it stands to reason that graphs will help us make better predictions.

Conventional supervised machine learning makes some assumptions about the data
that simplifies that analysis and that works well with tabular data. First, we assume
that every data point exists in isolation: every record in our dataset is statistically
independent of every other record. Second, we assume that the data points are
identically distributed when creating supervised machine learning models. So we
believe that every sample comes from the same distribution. The notion for these

Graph Analytics and Machine Learning | 9

two assumptions is known as independent and identically distributed (i.i.d.). However,
real-life events do not always adhere to the phenomenon of i.i.d.

To get the most accurate machine learning models, we need to take into account the
relationships between data points. For example, when we model a social network with
people interacting with one another, people who share the same friends are more
likely to get into contact with one another than with others who do not have common
friends. Graphs allow us to explicitly leverage the relations between the data points
between common friends because we model the relationships and not just the nodes
independently.

There are several ways that graph data can improve machine learning. One way is
to use selected graph algorithms or other graph queries to assess the relational char‐
acteristics of data points (vertices). For example, the PageRank scores of parties in a
transactional graph have helped to predict fraudsters. You can use these graph-based
features that embody the relationships between data points to enrich your existing
feature sets while retaining your existing model training methods.

Instead of following this traditional machine learning approach, where features are
designed and handpicked during the feature engineering phase, you can generate
features from the graph automatically by learning the graph’s structure. This so-called
graph representation learning alleviates the need for feature engineering. It is less
dependent on the analyst’s domain knowledge to design meaningful features as it
follows a data-driven approach. There are two flavors of graph representation learn‐
ing: embedding and graph neutral networks. Embedding techniques produce vectors
associated with each data point. We can pass these embedding vectors into any down‐
stream machine learning algorithm to include them in our prediction task. Graph
neural networks (GNNs) are analogous to conventional neural networks, except that
they take the graph’s connections into account during the training process. It is only
a slight exaggeration to say that GNNs do what other neural networks do, with
the potential for better results. Part 3 of this book is dedicated to graph-enhanced
machine learning.

Chapter Summary
In this chapter, we’ve learned that a graph is an abstract data structure consisting of
vertices and connections between those vertices called edges. Graphs enable us to
connect data together, to discover patterns and communities better than relational
databases. Edges perform better than table joins because edges directly connect the
vertices to their endpoint, making it unnecessary to read through a table and build an
extra indexing structure.

10 | Chapter 1: Connections Are Everything

Graph analytics is powerful because it efficiently explores and identifies patterns in
the data. Graph analytics can improve analytics performance and uncover things not
discovered by other methods.

Lastly, we have seen that graph-structured data helps us to make better predictions
with machine learning models. Graph allows us to leverage relationships between
data points explicitly, making our model closer to the natural phenomenon we are
investigating. Modeling the relationships in such a way will enable us to learn graph
representations that automatically generate features from the graph instead of hand-
picking features during the feature engineering phase.

In the next chapter, we will expand your understanding of graph concepts and
terminology and get you started on your way to see the world through graph-shaped
lenses.

Chapter Summary | 11

PART I

Connect

CHAPTER 2

Connect and Explore Data

In Chapter 1, we showed the potential of graph analytics and machine learning
applied to human and business endeavors, and we proposed to present the details
in three stages: the power of connected data, the power of graph analytics, and the
power of graph machine learning. In this chapter, we will take a deep dive into the
first stage: the power of connected data.

Before we delve into the power of connected data, we need to lay some groundwork.
We start by introducing the concepts and nomenclature of the graph data model. If
you are already familiar with graphs, you may want to skim this section to check that
we’re on the same page with regard to terminology. Besides graphs themselves, we’ll
cover the important concepts of a graph schema and traversing a graph. Traversal is
how we search for data and connections in a graph.

And along the way, we talk about the differences between graph and relational
databases and how we can ask questions and solve problems with graph analytics that
would not be feasible in a relational database.

From that foundational understanding of what a graph is, we move on to present
examples of the power of a graph by illustrating six ways that graph data provides you
with more insight and more analytical capability than tabular data.

After completing this chapter, you should be able to:

• Use the standard terminology for describing graphs•
• Know the difference between a graph schema and a graph instance•
• Create a basic graph model or schema from scratch or from a relational database•

model
• Apply the “traversal” metaphor for searching and exploring graph data•

15

• Understand six ways that graph data empowers your knowledge and analytics•
• State the entity resolution problem and show how graphs resolve this problem•

Graph Structure
In Chapter 1, we introduced you to the basic idea of a graph. In this section, we are
going to go deeper. First we will establish the terminology that we will be using for
the rest of this book. Then we will talk more about the idea of a graph schema, which
is the key to having a plan and awareness of your data’s structure.

Graph Terminology
Suppose you’re organizing data about movies, actors, and directors. Maybe you work
for Netflix or one of the other streaming services, or maybe you’re just a fan.

Let’s start with one movie, Star Wars: A New Hope, its three main actors, and its
director. If you were building this in a relational database, you could record this
information in a single table, but the table would grow quickly and rapidly become
unwieldy. How would we even record details about a movie, the fact that 50 actors
appeared in it, and the details of each of those actor’s careers, all in one table?

Best practice for the design of relational databases would suggest putting actors,
movies, and directors each into a separate table, but that would mean also adding in
cross-reference tables to handle the many-to-many relationships between actors and
movies and between movies and directors.

So in total, you’d need five tables just to represent this example in a relational
database, as in Figure 2-1.

Separating different types of things into different tables is the right answer for organ‐
izing the data, but to see how one record relates to another, we have to rejoin the data.
A query asking which actors worked with which directors would involve building a
temporary table in memory called a join table that includes all possible combinations
of rows across all the tables you’ve called, which satisfy the conditions of the query.
Join tables are expensive in terms of memory and processor time.

16 | Chapter 2: Connect and Explore Data

Figure 2-1. Diagram of relational tables for a simple movie database

As we can see from Figure 2-2, there is a lot of redundant data in this table join. For
very large or complex databases, you would want to think of ways to structure the
data and your queries to optimize the join tables.

Figure 2-2. Temporary table created from relational database query showing how three
actors are linked to George Lucas via the movie Star Wars

However, if we compare that to the graph approach, as shown in Figure 2-3, one
thing becomes immediately clear: the difference between a table and graph is that
a graph can directly show how one data element is related to another. That is, the
relationships between the data points are built into the database and don’t have to be
constructed at runtime. So one of the key differences between a graph and relational
database is that in a graph database, the relationships between data points are explicit.

Graph Structure | 17

Figure 2-3. Graph showing our basic information about Star Wars

Each actor, movie, and director is called a node or a vertex (plural: vertices). Vertices
represent things, physical or abstract. In our example, the graph has five vertices.
The connections between vertices are called edges, which describe the relationships
between the vertices. Edges are also considered data elements. This graph has four
edges: three for actors showing how they are related to a movie (acted_in), and one
for a director showing their relationship to a movie (directed_by). In its simplest
form, a graph is a collection of vertices and edges. We will use the general term object
to refer to either a vertex or an edge.

With this graph, we can answer a basic question: what actors have worked with
the director George Lucas? Starting from George Lucas, we look at the movies he
directed, which include Star Wars, and then we look at the actors in that movie,
which include Mark Hamill, Carrie Fisher, and Harrison Ford.

It can be useful or even necessary to distinguish the direction of an edge. In a
graph database, an edge can be directed or undirected. A directed edge has a specific
directionality, going from a source vertex to a target vertex. We draw directed edges
as arrows.

18 | Chapter 2: Connect and Explore Data

By adding a directed edge, we can also show hierarchy, that is, The Empire Strikes
Back was the sequel to Star Wars (Figure 2-4).

Figure 2-4. Multimovie graph with a directed edge. This shows how we begin to build up
the database with additional movies and production personnel. Note the directed edge,
is_sequel_of, which provides the context to show that Empire was the sequel to Star
Wars and not vice versa.

To do more useful work with a graph, however, we will want to add more details
about each vertex or edge, such as an actor’s birth date or a movie’s genre.

This book describes property graphs. A property graph is a graph where each vertex
and each edge can have properties that provide the details about individual elements.
If we look again at relational databases, properties are like the columns in a table.
Properties are what make graphs truly useful. They add richness and context to data,
which enables us to develop more nuanced queries to extract just the data that we
need. Figure 2-5 shows the Star Wars graph with some added features.

Graph Structure | 19

Figure 2-5. Graph with properties

Graphs offer us another choice for modeling properties. Instead of treating genre
as a property of movies, we could make each genre a separate vertex. Why do this?
When the property is categorical, then we expect lots of other vertices to have the
same property value (e.g., there are lots of sci-fi movies). All the sci-fi movies will link
to the Sci-fi vertex, making it incredibly easy to search them or to collect statistics
about them, such as “what was the top-grossing sci-fi movie?” All the non-sci-fi
movies have already been filtered out for you. Graph structure can not only model
your core data but can also act as a search index.

Other reasons why we might want to model a property as a vertex is to improve the
normalization or the data richness. Normalization is an approach to decomposing
tables to eliminate redundancy and update complexities. Additionally, decomposing
into more vertex types means we have more things that can have properties.

In our movie database example, we might want to create a new type of vertex called
Character so we can show who played what role. Figure 2-6 shows our Star Wars
graph with the addition of Character vertices. The interesting thing about Darth
Vader, of course, is that he was played by two people: David Prowse (in costume) and
James Earl Jones (voice). Fortunately, our database can represent this reality with a
minimum of modification.

20 | Chapter 2: Connect and Explore Data

Figure 2-6. Movie graph with Actor and Character types. The flexibility of this schema
enables us to easily show two actors portraying one character.

What else can we do with this graph? Well, it’s flexible enough to allow us to add
just about every person who was involved in the production of this movie—from
the director and actors to make-up artists, special effects artists, key grip, and even
best boy. Everyone who contributed to a movie could be linked using an edge called
worked_on and an edge property called role, which could include director, actor,
voice actor, camera operator, key grip, and so on.

If we then built up our database to include thousands of movies and everyone who
had worked on them, we could use graph algorithms to answer questions like “Which
actors do certain directors like to work with most?” With a graph database, you can
answer less obvious questions like “Who are the specialists in science fiction special
effects?” or “Which lighting technicians do certain directors like to work with most?”
Interesting questions for companies that sell graphics software or lighting equipment.

Graph Structure | 21

With a graph database, you can connect to multiple data sources, extract just the
data you need as vertices, and run queries against the combined dataset. If you had
access to a database of lighting equipment used on various movie projects, you could
connect that to your movie database and use a graph query to ask which lighting
technicians have experience with what equipment.

Table 2-1 summarizes the essential graph terminology we have introduced.

Table 2-1. Glossary of essential graph terminology

Term Definition
Graph A collection of vertices, edges, and properties used to represent connected data and

support semantic queries.
Vertexa A graph object used to represent an object or thing. Plural: vertices.
Edge A graph object that links two vertices, often used to represent a relationship between two

objects or things.
Property A variable associated with a vertex or edge, often used to describe it.
Schema A database plan comprising vertex and edge types and associated properties that will

define the structure of the data.
Directed edge / Undirected edge A directed edge represents a relationship with a clear semantic direction, from a source

vertex to a destination vertex. An undirected edge represents a relationship in which no
direction is implied.

a Another commonly used alternative name is node. It is a matter of personal preference. It’s been proposed that the
upcoming ISO standard query language for property graphs accept either VERTEX or NODE.

Graph Schemas
In the previous section, we intentionally started with a very simple graph and then
added complexity, by adding not only more vertices, edges, and properties but also
new types of vertices and edges. To model and manage a graph well, especially in a
business setting, it’s essential to plan out your data types and properties.

We call this plan a graph schema, or graph data model, analogous to the schema
or entity-relationship model for a relational database. It defines the types of vertices
and edges that our graph will contain as well as the properties associated with these
objects.

You could make a graph without a schema by just adding arbitrary vertices and edges,
but you’d quickly find it difficult to work with and difficult to make sense of. Also, if
you wanted to search the data for all the movies, for example, it would be extremely
helpful to know that they are all in fact referred to as “movie” and not “film” or
“motion picture”!

It’s also helpful to settle on a standard set of properties for each object type. If we
know all movie vertices have the same core set of properties, such as title, genre, and
release date, then we can easily and confidently perform analysis on those properties.

22 | Chapter 2: Connect and Explore Data

1 Some graph databases would handle multiple roles by having a single Worked_on edge whose role property
accepts a list of roles.

Figure 2-7 shows a possible schema for a movie graph database. It systematically
handles several of the data complexities that arose as we talked about adding more
and more movies to the database.

Figure 2-7. Graph schema for movie database

Let’s run through the features of the schema:

• A Person vertex type represents a real-world person, such as George Lucas.•
• The Worked_on edge type connects a Person to a Movie. It has a property to•

describe the person’s role: director, producer, actor, gaffer, etc. By having
the role as a property, we can support as many roles as we want with only one
vertex type for persons and one edge type for working on a film. If a person had
multiple roles, then the graph can have multiple edges.1 Schemas only show one
of each type of object.

• The Character vertex type is separate from the Person vertex type. One Person•
could portray more than one Character (Tyler Perry in the Madea films), or
more than one Person could portray one Character (David Prowse, James Earl
Jones, and Sebastian Shaw as Darth Vader in The Return of the Jedi).

• The Movie vertex type is straightforward.•
• Is_sequel_of is a directed edge type, telling us that the source Movie is the•

sequel of the destination Movie.

Graph Structure | 23

• As noted before, we chose to model the Genre of a movie as a vertex type instead•
of as a property, to make it easier to filter and analyze movies by genre.

The key to understanding schemas is that having a consistent set of object types
makes your data easier to interpret.

Traversing a Graph
Traversing a graph is the fundamental metaphor for how a graph is searched and
how the data is gathered and analyzed. Imagine the graph as a set of interconnecting
stepping stone paths, where each stepping-stone represents a vertex. There are one or
more agents who are accessing the graph. To read or write a vertex, an agent must
be standing on its stepping stone. From there, the agent may step or traverse across
an edge to a neighboring stone/vertex. From its new location, the agent can then take
another step. Remember: if two vertices are directly connected, it means there is a
relationship between them, so traversing is following the chain of relationships.

Hops and Distance
Traversing one edge is also called making a hop. An analogy to traversing a graph is
moving on a game board, like the one shown in Figure 2-8. A graph is an exotic game
board, and you traverse the graph as you would move across the game board.

Figure 2-8. Traversing a graph is like moving on a game board

24 | Chapter 2: Connect and Explore Data

In many board games, when it is your turn, you roll a die to determine how many
steps or hops to take. In other games, you may traverse the board until you reach a
space of a certain type. This is exactly like traversing a graph in search of a particular
vertex type.

Graph hops and distance come up in other real-world situations. You may have heard
of “six degrees of separation.” This refers to the belief that everyone in the United
States is connected to everyone else through at most six hops of relationship. Or, if
you use the LinkedIn business network app, you have probably seen that when you
look at a person’s profile, LinkedIn will tell you if they are connected to you directly
(one hop), through two hops, or through three hops.

Traversing a graph is also how searches are conducted in graph databases. There are
two basic approaches: either visit every neighbor vertex before continuing to the next
level (breadth-first search) or follow a single chain of connections to the end before
trying alternate paths (depth-first search). We’ll go further into detail about these
search types in Chapter 6.

Breadth and Depth
There are two basic approaches to systematically traversing a graph to conduct a
search. Breadth-first search (BFS) means visit each of your direct neighbors before
continuing the search to the next level of neighbors, the next level, and so on. Graph
databases with parallel processing can accelerate BFS by having multiple traversals
take place at the same time.

Depth-first search (DFS) means follow a single chain of connections as far as you can
before backtracking to try other paths. Both BFS and DFS will result in eventually
visiting every vertex, unless you stop because you have found what you sought.

Graph Modeling
Now you know what graphs and graph schemas are. But how do you come up with a
good graph model?

Start by asking yourself these questions:

• What are the key objects or entities that I care about?•
• What are the key relationships that I care about?•
• What are the key properties of entities that I want to filter out?•

Graph Modeling | 25

Schema Options and Trade-Offs
As we have seen, good graph schema design represents data and relationships in a
natural way that allows us to traverse vertices and edges as if they were real-world
objects. As with any collection of real-world things, there are many ways we could
organize our collection to optimize searching and extracting what we need.

In designing a graph database, two considerations that will influence the design
are the format of our input data and our query use cases. And as we will see in
this section, a key trade-off is whether we want to optimize our schema to use less
memory or make queries run faster.

Vertex, edge, or property?
If you are converting tabular data into a graph, the natural thing seems to be to
convert each table to a vertex type and each table column to a vertex property. In fact,
a column could map to a vertex, an edge, a property of a vertex, or a property of an
edge.

Entities and abstract concepts generally map to vertices, and you could think of them
as nound, such as movie or actor from our earlier example. Relationships generally
map to edges, and you can think of them as verbs, such as directs or acts. Descriptors
are analogous to adjectives and adverbs and can map to vertex or edge properties,
depending on the context and your query use case.

At first glance, it would appear that storing object attributes as close to the object as
possible—that is, as properties—would deliver the most optimal solution. However,
consider a use case in which you need to optimize your search for product color.
Color is a quality that would usually be expected to be found as a property of a vertex,
but then searching for blue objects would necessitate looking at every vertex.

In a graph, you can create a search index by defining a vertex type called color and
linking the color vertex and the product vertex via an undirected edge. Then to
find all blue objects, you simply start from the color vertex blue and find all linked
product vertices. This speeds up query performance, with the trade-off being greater
complexity and higher memory usage.

Edge direction
Earlier we introduced the concept of directionality in edges and noted that you can,
in your design schema, define an edge type as directed or undirected. In this section,
we’ll discuss the benefits and trade-offs of each type. We’ll also discuss a hybrid
option available in the TigerGraph database.

This is so useful you might think you could use it all the time, but with all things
computational, there are benefits and trade-offs in your choice of edge type.

26 | Chapter 2: Connect and Explore Data

Undirected edge
Links any two vertices of defined type with no directionality implied. The benefit
is they are easy to work with when creating links and easy to traverse in either
direction. For example, if users and email addresses are both vertex types, you
can use an undirected edge to find someone’s email but also find all the users who
use that same email address—something you can’t do with a directed edge.

The trade-off with an undirected edge is it does not give you contextual informa‐
tion such as hierarchy. If you have an enterprise graph and want to find the
parent company, for example, you can’t do this with undirected edges because
there is no hierarchy. In this case, you would need to use a directed edge.

Directed edge
Represents a relationship with a clear semantic direction, from a source vertex to
a destination vertex. The benefit to a directed edge is it gives you more contextual
information. It is likely to be more efficient for the database to store and handle
than an undirected edge. The trade-off, however, is you can’t trace backward
should you need to.

Directed edge paired with a reverse directed edge
You can have the benefits of directional semantics and traversing in either direc‐
tion if you define two directed edge types, one for each direction. For example, to
implement a family tree, you could define a child_of edge type to traverse down
the tree and a parent_of edge type to traverse up the tree. The trade-off, though,
is you have to maintain two edge types: every time you insert or modify one
edge, you need to insert or modify its partner. The TigerGraph database makes
this easier by allowing you to define the two types together and to write data
ingestion jobs that handle the two together.

As you can see, your choice of edge type will be influenced by the types of queries
you need to run balanced against operational overheads such as memory, speed, and
coding.

If the source vertex and destination vertex types are different, such
as Person and Product, you can usually settle for an undirected
edge and let the vertex types provide the directional context. It’s
when the two vertex types are the same and you care about direc‐
tion that you must use a directed edge.

Granularity of edge type
How many different edge types do you need, and how can you optimize your use of
edge types? In theory, you could have one edge type—undirected—that linked every
type of vertex in your schema. The benefit would be simplicity—only one edge type

Graph Modeling | 27

to remember!—but the trade-offs would be the number of edge properties you would
need for context and slower query performance.

At the other extreme, you could have a different edge type for each type of rela‐
tionship. For instance, in a social network, you could have separate edge types for
coworker, friend, parent_of, child_of, and so on. This would be very efficient to
traverse if you were looking for just one type of relationship, such as professional
networks. The trade-off is the need to define new edge types to represent new types
of relationships and a loss of abstraction—that is, an increase in complexity—in your
code.

Modeling interaction events
In many applications, we want to track interactions between entities, such as a finan‐
cial transaction where one financial account transfers funds to another account. You
might think of representing the transaction (transferring funds) as an edge between
two Account vertices. If you have multiple occurrences, will you have multiple edges?
While it seems easy to conceive of this (Figure 2-9), in the realms of both mathemati‐
cal theory and real-world databases, this is not so straightforward.

Figure 2-9. Multiple events represented as multiple edges

In mathematics, having multiple edges between a given pair of vertices goes beyond
the definition of ordinary graphs into multi-edges and multigraphs. Due to this
complexity, not all graph databases support this, or if they do, they don’t have a
convenient way to refer to a specific edge in the group. Another way to handle this
is to model each interaction event as a vertex and use edges to connect the event to
the participants (Figure 2-10a). Modeling an event as a vertex provides the greatest
flexibility for linking it to other vertices and for designing analytics. A third way is to
create a single edge between the two entities and aggregate all the transactions into an
edge property (Figure 2-10b).

28 | Chapter 2: Connect and Explore Data

Figure 2-10. Two alternate ways to model multiple events: (a) events as vertices, and (b)
a single event edge with a property that contains a list of occurrences

Table 2-2 summarizes the pros and cons of each approach. The simplest model is not
always your best choice, because application requirements and database performance
issues may be more important.

Table 2-2. Comparing options for modeling multiple occurrences of an interaction

Model Benefit Trade-off
Multiple edges Simple model Database support is not universal
Vertex linked to related vertices Filtering on vertex properties

Ease of analytics including community and
similarity of events
Advanced search tree integration

Uses more memory
Takes more steps to traverse

Single edge with property
recording details of occurrences

Less memory usage
Fewer steps to traverse between users

Searching on transactions is less efficient
Slower update/insert of the property

Adjusting your design schema based on use case
Suppose you are creating a graph database to track events in an IT network. We’ll
assume you would need these vertex types: event, server, IP, event type, user, and
device. But what relationships would you want to analyze, and what edges would you
need? The design would depend on what you wanted to focus on, and your schema
could be event centered or user centered.

For the event-centered schema (Figure 2-11a), the key benefit is that all related data
is just one hop away from the event vertex. This makes it straightforward to find
communities of events, find servers that processed the most events of a given type,
and find the servers that were visited by any given IP. The trade-off is that from a user
perspective, the user is two hops away from a device or IP vertex.

Graph Modeling | 29

Figure 2-11. Two options for arranging the same vertex types: (a) event centered and (b)
user centered

We can fix this by making our schema user centered at the expense of separating
events from IPs and servers by two hops, and separating event types from devices,
servers, and IPs by three hops (Figure 2-11b). However, these disadvantages might be
worth the trade-off of being able to do useful user-centered analysis such as finding
all users who share the same device/IP/server as a given user or profiling blocked
users to try to predict who else should be blocked.

Transforming Tables in a Graph
You won’t always create graph databases from scratch. Often, you’ll be taking data
that is already stored in tables and then moving or copying the data into a graph. But
how should you reorganize the data into a graph?

Migrating data from a relational database into a graph database is a matter of map‐
ping the tables and columns onto a graph database schema. To map data from
a relational database to a graph database, we create a one-to-one correspondence
between columns and graph objects. Table 2-3 outlines a simple example of mapping
data from a relational database to a graph database for bank transaction data.

30 | Chapter 2: Connect and Explore Data

Table 2-3. Example of mapping tables in a relational database to vertices, edges, and
properties in a graph database

Source: Relational database Destination: Graph database
Table: Customers—multiple columns including
customer_id, first_name, last_name, DOB

Vertex type: Customer—with corresponding properties of
customer_id, first_name, last_name, DOB

Table: Banks—columns bank_id, bank_name,
routing_code, address

Vertex type: Bank—properties bank_name, routing_code,
address

Table: Accounts—columns bank_id,
customer_id

Vertex type: Account—properties bank_id, customer_id

Table: Transactions—columns
source_account, destination_account,
amount

Vertex type: Transaction—properties source_account,
destination_account, amount
OR
Directed edge: Transaction—properties source_account,
destination_account, amount

The graph schema would be as shown in Figure 2-12.

Figure 2-12. Graph schema for a simple banking database with transactions as separate
vertices

One of the key decisions in creating your data schema is deciding which columns
need to be mapped to their own vertices. For instance, people are generally key
to understanding any real-life situation—whether they be customers, employees, or
others—so they would generally map to their own vertices.

In theory, every column in a relational database could become a vertex in your
schema, but this is unnecessary and would quickly become unwieldy. In the same

Graph Modeling | 31

way that you have to think about structuring a relational database, optimizing a graph
database is about understanding the real-world structure of your data and how you
intend to use it.

In a graph database, the key columns from your relational database become vertices
and the contextual or supporting data becomes properties of those vertices. Edges
generally map to foreign keys and cross-reference tables.

Some graph databases have tools that facilitate the importing of tables and mapping
of foreign keys to vertex and edge IDs.

As with a relational database, a well-structured graph database eliminates redundant
or repetitive data. This not only ensures efficient use of computing resources but,
perhaps more importantly, ensures the consistency of your data by ensuring that it
doesn’t exist in different forms in different locations.

Optimizing mapping choices
Simple mapping of columns to vertices and vertex properties works, but it may not
take advantage of the richness of connections available in a graph, and in reality it is
often necessary to adjust mapping choices based on differing search use cases.

For instance, in a graph database for a contacts database, mobile number and email
address are properties of an individual person and are generally represented as
properties of that vertex.

However, if you were trying to use a banking application to detect fraud, you might
want to distinguish email addresses and telephone numbers as separate vertices
because they are useful in linking people and financial transactions.

It is not uncommon for information from multiple tables to map to one vertex or
edge type. This is especially common when the data is coming from multiple sources,
each of which provides a different perspective on the same real-world entities. Like‐
wise, one table can map to more than one vertex and edge type.

Model Evolution
Most likely, your data is going to evolve over time, and you will need to adjust the
schema to take account of new business structures and external factors. That’s why
schemas are designed to be flexible: to allow the system to be adapted over time
without having to start from scratch.

If we look at the banking sector, for instance, financial institutions are constantly
moving into new markets, either through geographical expansion or by introducing
new types of products.

32 | Chapter 2: Connect and Explore Data

As a simple example, let’s assume we have a bank that’s always operated in a single
country. The country of residence for all its customers is therefore implicit. However,
moving into a second country would require updating the database to include coun‐
try data. One could either add a country property to every vertex type for which it
was relevant or create a new vertex type called country and create vertices for each
country in which the bank operates.

With a flexible schema, the schema can be updated by adding the new vertex type and
then linking customer vertices to the new country vertex.

Although this is a simple example, it shows how modeling data can be an evolution‐
ary process. You can start with an initial model, perhaps one that closely resembles a
prior relational database model. After you use your graph database for a while, you
may learn that some model changes would serve your needs better. Two common
changes are converting a vertex property into an independent vertex type and adding
additional edge types.

Adapting a graph to evolving data can be simple. Adding a property, a vertex type,
or an edge type is easy. Connecting two different datasets is easy, as long as we know
how they relate. We can add edges to connect related entities, and we can even merge
entities from two sources that represent the same real-world entity.

Graph Power
We’ve now seen how to build a graph, but the most important question that needs to
be answered is why build a graph? What are the advantages? What can a graph do for
you that other data structures don’t do as well? We call graph technology’s collected
capabilities and advantages graph power.

What follows are the key facets of graph power. We humbly admit that this is neither
the complete nor the best possible list. We suspect that others have presented lists
that are more complete and more precise in a mathematical sense. Our goal, however,
is not to present theory but to make a very human connection: to take the ideas
that resonate with us and to share them with you, so that you will understand and
experience graph power on your own.

Connecting the Dots
A graph forms an actionable body of knowledge.

As we’ve seen, connecting the dots is graph power at its most fundamental level.
Whether it’s linking actors and directors to movies or financial transactions to sus‐
pected fraudsters, a graph lets you describe the relationship between one entity and
another across multiple hops.

Graph Power | 33

The power of graph comes from being able to describe a network of connections,
detect patterns, and extract intelligence from those patterns. While individual vertices
may not contain the intelligence we are looking for, taken together, they may enable
us to discover patterns in the relationships between multiple vertices that reveal new
information.

With this knowledge we can begin to infer and predict from the data, like a detective
joining the dots in a murder investigation.

In every detective story, the investigator gathers a set of facts, possibilities, hints, and
suspicions. But these isolated bits and pieces are not the answer. The detective’s magic
is to stitch these pieces together into a hidden truth. They might use the pattern of
known or suspected connections to predict relationships they had not been given.

When the detective has solved the mystery, they can show a sequence or network
of connections that connect the suspect to the crime, along with the means, oppor‐
tunity, and motive. They can likewise show that a sufficiently robust sequence of
connections does not exist for any other suspect.

Did those detectives know they were doing graph analytics? Probably not, but we all
do it every day in different aspects of our lives, whether that’s work, family, or our
network of friends. We are constantly connecting the dots to understand connections
between people and people, people and things, people and ideas, and so on.

The power of graph as a data paradigm is that it closely parallels this process, making
the use of graph more intuitive.

The 360 View
A 360 graph view eliminates blind spots.

Organizations of all sizes bemoan their data silos. Each department expects the other
to yield up its data on demand while at the same time failing to appreciate its own
inability to be open on the same basis. The problem is that business processes and the
systems that we have to support them actively work against this open sharing of data.

For instance, two departments may use two different data management systems.
Although both may store their data in a relational database, the data schema for each
is so alien to the other that there is little hope of linking the two to enable sharing.

The problem may not be obvious if you look at it at the micro scale. If, for instance,
you are compiling a record for customer X, an analyst with knowledge of the two
systems in which customer data is stored will be able to easily extract the data from
both, manually merge or reconcile the two records, and present a customer report.
The problem comes when you want to replicate this a hundred thousand or a million
times over.

34 | Chapter 2: Connect and Explore Data

And it’s only by sharing the data in a holistic, integrated way that a business would be
able to remove the blinders that prevent it from seeing the whole picture.

The term Customer 360 describes a data architecture in which customer data from
multiple sources and domains is brought together into a single dataset so that you
have a comprehensive and holistic view of each customer.

Working with a relational database, the most obvious solution would be to merge
these two departmental databases into one. Many businesses have tried grand data
integration projects, but they usually end in tears because while merging data yields
considerable benefits, there are also considerable trade-offs to be made that result in
the loss of contextual nuance and functionality. Let’s face it: there’s usually a reason
why the creators of a certain software package chose to construct their data schema
in that particular way, and attempting to force it to conform to the schema of another
system, or a new hybrid schema, will break at least one of the systems.

Graph allows you to connect databases in a natural, intuitive way without disturbing
the original tables. Start by granting the graph application access to each database and
then create a graph schema that links the data points from each database in a logical
way. The graph database maps the relationships between the data points and does the
analytical heavy lifting, leaving the source databases to carry on with what they were
doing before.

If you want to see your full surroundings, you need a view that looks out across every
angle—all 360 degrees. If you want to understand your full business or operational
circumstances, you need data relationships across all the data you know is out there.

This is something we will look at in more depth in Chapter 3, where we will demon‐
strate a use case involving Customer Journey.

We have seen in the previous two points how to set up the data, and now in the next
four points, we will look at how to extract meaningful intelligence from it.

Looking Deep for More Insight
Searching deep in a graph reveals vast amounts of connected information.

The “six degrees of separation” experiment conducted in the 1960s by Stanley Mil‐
gram demonstrated that just by following personal connections (and knowing that
the target person is in Boston), randomly selected persons in Omaha, Nebraska,
could reach the mystery person through no more than six person-to-person connec‐
tions.

Since then, more rigorous experiments have shown that many graphs are so-called
small-world graphs, meaning that a source vertex can reach millions and even bil‐
lions of other vertices in a very small number of hops.

Graph Power | 35

This vast reach in only a few hops occurs not only in social graphs but also in
knowledge graphs. The ability to access this much information, and to understand
how those facts relate to one another, is surely a superpower.

Suppose you have a graph that has two types of vertices: persons and areas of
expertise, like the one in Figure 2-13. The graph shows who you know well and what
you know well. Each person’s direct connections represent what is in their own head.

Figure 2-13. A graph showing who knows whom and their areas of expertise

From this we can readily see that A is an expert in two topics, astronomy and
anthropology, but by traversing one additional hop to ask B and C what they know, A
has access to four more specialties.

Now, suppose each person has 10 areas of expertise and 100 personal connections.
Consider how many people and how many areas of expertise are reached by your
friends’ friends. There are 100 × 100 = 10,000 personal connections, each with 10
areas of expertise. Chances are the number of unique persons is not 10,000—you and
your friends know some of the same people. Nevertheless, with each hop in a graph,
you are exposed to an exponentially larger quantity of information. Looking for the
answer to a question? Want to do analytics? Want to understand the big picture? Ask
around, and you’ll find someone who knows someone who knows.

We talk about “looking deeper” all the time, but in graph it means something par‐
ticular. It is a structured way of searching for information and understanding how
those facts are related. Looking deeper includes breadth-based search to consider
what is accessible to you from your current position. It then traverses to some of

36 | Chapter 2: Connect and Explore Data

those neighboring vertices to gain depth and see what is accessible from those new
positions. Whether it’s for a fraud investigation or to optimize decision making,
looking deeper within a graph uncovers facts and connections that would otherwise
be unknown.

As we saw in “Connecting the Dots” on page 33, one relationship on its own may be
unremarkable, and there may be little if any information in a given vertex to reveal
bad intentions, but thousands or even millions of vertices and edges considered
in aggregate can begin to reveal new insights, which in turn leads to actionable
intelligence.

Seeing and Finding Patterns
Graphs present a new perspective, revealing hidden data patterns that are easy to
interpret.

As we have seen, a graph is a set of vertices and edges, but within the set of vertices
and relationships, we can begin to detect patterns.

A graph pattern is a small, connected set of vertices and edges that can be used
as a template for searching for groups of vertices and edges that have a similar
configuration.

The most basic graph pattern is the data triplet: vertex → edge → vertex. The data
triplet is sometimes thought of as a semantic relationship because it is related to the
grammar of language and can be read as “subject → verb → object.” An example is
Bob → owns → boat.

We can also use graph patterns to describe higher-level objects or relationships that
we have in mind. For instance, depending on the schema, a person could be linked to
a number of vertices containing personal data such as address, telephone, and email.
Although they are separate vertices, they are all related to that one person. Another
example is a wash sale, which is the combination of two securities trades: selling a
security at a loss, and then purchasing the same or a substantially similar security
within 30 days.

Patterns come in different shapes. The simplest pattern, which we have looked at
already, is the linear relationship between two vertices across a series of hops. The
other common pattern is the star shape: many edges and vertices radiating from a
central vertex.

A pattern can be Y-shaped, a pattern you would see when two vertices come together
on a third vertex, which is then related to a fourth vertex. We can also have circular or
recursive patterns and many more.

In contrast to relational databases, graph data is easy to visualize, and graph data
patterns are easy to interpret.

Graph Power | 37

A well-designed graph gives names to the vertex and edge types that reflect their
meaning. When done right, you can almost look at a connected sequence of vertices
and edges and read the names like a sentence. For example, consider Figure 2-14,
which shows Items purchased by Persons.

Figure 2-14. Persons who bought Item 1 and other products they bought

Starting from the left, we see that Person A (you) bought Item 1. Moving to the right,
we then see another group of persons, B, C, and D, who also bought Item 1. Finally,
we see some more items that were purchased by these persons. So we can say, “You
bought Item 1. Other persons who bought Item 1 also bought Items 2, 3, 4, and 5.”
Sound familiar?

A closer analysis reveals that Item 4 was the most popular item, purchased by all three
shoppers in your co-purchaser group. Item 3 was next most popular (purchased by
two), and Items 2 and 5 were the least popular. With this information, we can refine
our recommendations.

Many retailers use graph analytics for their recommendation analytics, and they often
go deeper yet, classifying purchases by other customer properties such as gender, age,
location, and time of year. We could even make recommendations based on time of
day if we saw that customers were, for instance, more likely to purchase luxury items
in the evening and make more pragmatic purchases in the morning.

If we also analyze the sequence of purchases, we can work out some highly personal
information about customers. One large retailer was famously able to tell which

38 | Chapter 2: Connect and Explore Data

customers were pregnant and when they were due simply by focusing on the pur‐
chases of 25 products. The retailer was then able to send the customer targeted
promotional offers to coincide with the birth of their child.

Matching and Merging
Graph is the most intuitive and efficient data structure for matching and merging
records.

As we discussed earlier, organizations want to have a 360-degree view of their data,
but a big obstacle to this is data ambiguity. An example of data ambiguity is having
multiple versions of customer data, and the challenges of deduplicating data are well
known to many organizations.

Duplication is sometimes caused by the proliferation of enterprise systems, which
split your customer view across many databases. For instance, if you have customer
records in a number of databases—such as Salesforce, which is a customer service
database, an order-processing system, and an accounting package—the view of that
customer is divided across those systems.

To create a joined-up view of your customers, you need to query each database and
join together the records for each customer.

However, it’s not always that easy because customers can end up being registered
in your databases under different reference IDs. Names can be spelled differently.
Personal information (name, phone number, email address, etc.) can change. How do
you match together the correct records?

Entity resolution matches records based on properties that are assumed to be unique
to the entities that are being represented. In the case of person records, these might
be email addresses and telephone numbers, but they could also be aggregates of
properties. For instance, we can take name, date of birth, and place of birth together
as a unique identifier because what are the chances of those three things being the
same for any two people in the world?

Entity resolution is challenging across relational databases because in order to com‐
pare entities, you need to be comparing like with like. If you are working with a
single table, you can say that similar values in similar columns indicate a match,
allowing you to resolve two entities into one, but across multiple tables, the columns
may not match. You may also have to construct elaborate table joins to include
cross-referenced data in the analysis.

By comparison, entity resolution in a graph is easy. Similar entities share similar
neighborhoods, which allows us to resolve them using similarity algorithms such as
cosine similarity and Jaccard similarity.

Graph Power | 39

In entity resolution, we actually do two things:

1. Compute match likelihood scores for pairs of entities by measuring the degree of1.
similarity of their properties and neighborhoods.

2. Merge the entities that have high enough match likelihood scores.

When it comes to merging records, we have a few options:

1. Copy the data from record B to record A, redirect the edges that pointed to B so1.
they point to A, and delete B.

2. Create a special link called same_as between records A and B.2.
3. Create a new record called C, copy the data from A and B, redirect the links from3.

A and B so they link to C, and finally create same_as edges pointing from vertex
C to vertices A and B.

Which is better? The second is quicker to execute because there is only one step
involved—adding an edge—but a graph query can execute the first and third options
just as well. In terms of outcomes, which option is better depends on your search use
case. For instance, do you prioritize richness of data or search efficiency? It might also
depend on the degree of matching and merging you expect to do in your database.

We will demonstrate and discuss entity resolution with a walkthrough example in
Chapter 11.

Weighing and Predicting
Graphs with weighted relationships let us easily model and analyze complex cost
structures.

As we’ve shown, graphs are a powerful tool for analyzing relationships, but one thing
to consider is that relationships don’t have to be binary, on or off, black or white.
Edges, representing the relationships between vertices, can be weighted to indicate
the strength of the relationship, such as distance, cost, or probability.

If we weight the edges, path analysis then becomes a matter of not just tracing the
links between nodes but also doing computational work such as aggregating their
values.

However, weighted edges make graph analysis more complex in other ways, too. In
addition to the computational work, finding shortest paths in a graph with weighted
edges is algorithmically harder than in an unweighted graph. Even after you’ve found
one weighted path to a vertex, you cannot be certain that it is the shortest path. There
might be a longer path you haven’t tried yet that has lower total weight.

40 | Chapter 2: Connect and Explore Data

Then again, edge weighting does not always make for a significant increase in work.
In the PageRank algorithm, which computes the influence of each vertex on all other
vertices, edge weighting makes little difference except that the influence that a vertex
receives from a referring neighbor is multiplied by the edge weight, which adds a
minimal computational overhead to the algorithm.

There are many problems that can be solved with edge weighting. Anything to do
with maps, for instance, lends itself to edge weighting. You can have multiple weights
per edge. Considering the map example, these could include constant weights such
as distance and speed limits and variable weights such as current travel times to take
account of traffic conditions.

We could use a graph of airline routes and prices to work out the optimal journey for
a passenger based not only on their itinerary but also their budget constraints. Are
they looking for the fastest journey regardless of price, or are they willing to accept
a longer journey, perhaps with more stops, in exchange for a lower price? In both
cases, you might use the same algorithm—shortest path—but prioritize different edge
weights.

With access to the right data, we could even work out the probability of having a
successful journey. For instance, what is the probability of our flight departing and
arriving on time? For a single hop, we might accept an 80% chance that the flight
wouldn’t be more than an hour late, but for a two-hop trip, where the chance for the
second hop not being late was 85%, the combined risk of being delayed would be 68%.

Likewise, we could look at a supply chain model and ask, what are the chances of
a severe delay in the production of our finished product? If we assume that there
are six steps and the reliability of each step is 99%, then the combined reliability is
about 94%. In other words, there is a 6% chance that something will go wrong. We
can model that across hundreds of interconnecting processes and use a shortest path
algorithm to find the “safest” route that satisfies a range of conditions.

Chapter Summary
In this chapter, we have looked at graph structure and how we can use a graph
database to represent data as a series of data nodes and links. In graphs, we call these
vertices and edges, and they enable us to not only represent data in an intuitive way—
and query it more efficiently—but also use powerful graph functions and algorithms
to traverse the data and extract meaningful intelligence.

Property graphs are graphs in which every vertex and edge—which we collectively
refer to as objects—can hold properties that describe that object. One property of an
edge is direction, and we discussed the benefits and trade-offs of different directed
edge types in indicating hierarchy and sequence.

Chapter Summary | 41

We looked at what is meant by traversing a graph as well as “hops” and “distance.”
There are two approaches to traversing a graph: breadth-first search and depth-first
search, each with its own benefits and trade-offs.

We looked at the importance of using a graph schema to define the structure of the
database, how a consistent set of object types makes your data easier to interpret, and
how it can closely relate to the real world.

Careful consideration was given to different approaches to the design, in particular
the search use case and how mapping the columns of a relational database to a graph
database can impact query time and the complexity of your coding.

A key step in implementing a graph database is mapping columns in a relational
database to a graph, because a common use case for graph is building relationships
between disparate databases. One of the decisions you have to make is which col‐
umns to map to their own objects and which to include as properties of other objects.

We looked at the evolution of databases over time and why a flexible schema is
essential to ensuring your database remains up to date.

In the design of a database schema, whether that be for a relational or graph database,
there are benefits and trade-offs to be made, and we looked at a few of those,
including the choice of whether to map a column to an object or make it the property
of an object. We also considered the choice of edge directionality and the granularity
of edge types.

There are also trade-offs to be made in recording multiple events between the same
two entities and tracking events in an IT network.

Finally, we looked at what we mean by graph power, including the essential question,
why use graph in the first place? We looked at some general use cases, including:

• Connecting the Dots: how a graph forms an actionable body of knowledge•
• The 360 View: how a 360 graph view eliminates blind spots•
• Looking Deep for More Insight: how deep graph search reveals vast amounts of•

connected information
• Seeing and Finding Patterns: how graphs present a new perspective, revealing•

hidden data patterns that are easy to interpret
• Matching and Merging: why graph is the most intuitive and efficient data struc‐•

ture for matching and merging records
• Weighing and Predicting: how graphs with weighted relationships let us easily•

model and analyze complex cost structures

42 | Chapter 2: Connect and Explore Data

CHAPTER 3

See Your Customers and Business Better:
360 Graphs

This chapter will employ some real-world use cases to illustrate two of the six graph
powers that we discussed in the previous chapter: “Connecting the Dots” on page 33
and the “The 360 View” on page 34. The 360 view offered by graphs helps enterprises
and agencies see their data more comprehensively, which in turn enables better
analytics. In the first use case, we build a Customer 360 (C360) graph to enable a
company to track and understand presales customer journeys. In the second case, we
build a Drug Interaction 360 graph so researchers can develop safer drug therapies.

After completing this chapter, you should be able to:

• Define the term C360 and explain its value proposition•
• Know how to model and analyze customer journeys in a graph•
• Know how to use graph analytics to count and filter properties and relationships•
• Set up and run a TigerGraph Cloud Starter Kit using GraphStudio•
• Read and understand basic GSQL queries•

Case 1: Tracing and Analyzing Customer Journeys
A business is nothing without sales. Selling, whether to consumers (B2C) or to
other businesses (B2B), has become not only an art but also a science. Businesses
analyze every stage of their interactions with a prospect (a potential customer) from
beginning to end, hopefully resulting in a sale. According to Gartner, worldwide
spending on customer relationship management (CRM) software increased by 15.6%

43

1 “CRM Market Share—Salesforce Bright Future in 2020,” Nix United, February 19, 2020,
https://nix-united.com/blog/crm-market-share-salesforce-bright-future-in-2020.

2 “Market Share of CRM Leading Vendors Worldwide 2016–2020,” Statista, June 13, 2022,
https://www.statista.com/statistics/972598/crm-applications-vendors-market-share-worldwide.

in 2018 to reach $48.2 billion in 2020.1 Salesforce has established itself as the market
leader in CRM software, with approximately a 20% market share.2

A key way to think about the process of selling is to consider the prospective custom‐
er’s experience as a series of events over time. How and when did someone engage
with the business and its wares? Mapping out the interactions with a sales prospect is
known as tracing the customer’s journey.

The customer journey model is an essential tool for sales and marketing. First, it
takes the customer’s point of view, as they are the ultimate decision makers. Second,
by realizing that the customer may need to move through stages, the business can
map out what it believes will be attractive journeys that will secure many successful
business deals. Third, when looking at individual journeys, we can see how far they
have progressed, whether a journey has stalled, become slow, or changed course.
Fourth, by analyzing the collected set of journeys, businesses can see patterns and
trends and compare them to their targeted behavior. Are users in fact following the
journey that was designed? Do particular engagements succeed in moving prospects
forward?

There is a need for an effective and scalable data system that can collect the mixed
types of data in a customer journey and support the analysis of both individual and
aggregated journeys.

Solution: Customer 360 + Journey Graph
CRMs would seem to offer the solution, but they have not fully met business’s needs
for customer journey analysis. Designed for data to be either entered manually or
ingested digitally, CRMs record and present data primarily in tabular form. The
challenge comes from the fact that different types of engagements (watching a video,
attending a demonstration, downloading trial software) have different characteris‐
tics. Storing mixed data like this in one table doesn’t work well, so data must be
spread across multiple tables. The real challenge comes from modeling the journey’s
sequence. The only way to follow the sequence is either through a series of costly
table joins or to filter for all engagements associated with a certain person and then
sort those engagements by time.

With a graph, on the other hand, we can easily model the sequence directly with
edges, as shown in Figure 3-1. The journeys of all prospective customers can be

44 | Chapter 3: See Your Customers and Business Better: 360 Graphs

https://nix-united.com/blog/crm-market-share-salesforce-bright-future-in-2020
https://www.statista.com/statistics/972598/crm-applications-vendors-market-share-worldwide

stored in one graph. Individual journeys will have similarities and intersections with
one another, as persons attend the same events or engage in similar activities.

Figure 3-1. Customer journey: general stages and a particular customer’s journey shown
as a graph

Businesses not only want to map out customer journeys, but they also want to make
them more successful: to increase customer satisfaction, to increase the percentage of
journeys that end in a sale, to increase the value of sales, and to shorten the journeys.
To do this, businesses need to understand the context of each customer and their
decisions. This is where a 360 view helps. The 360 view is one of the unique powers of
graphs we discussed in the previous chapter.

Customer 360 (C360) is a comprehensive view of a customer (or any entity of interest)
created by integrating data from multiple sources, as suggested in Figure 3-2. Like
customer journeys, Customer 360 is a great fit for graphs and graph analytics. A
graph can support an unlimited number of relationships between one vertex (a
customer) and other entities. These entities can describe not just the journey (a cold
call, webinar, brochure, product demonstration, or website interaction) but also the
context of the customer (current and past job titles, tenures, employers, locations,
skills, interests, and education). A good 360 database will also include information
about employers and industries (size, initiatives, news, etc.).

Solution: Customer 360 + Journey Graph | 45

Figure 3-2. Information about a single individual connected to form a holistic view for a
Customer 360 Graph

With the combination of 360° data and journey analysis, businesses are able to clearly
see what is happening in the sales process, at the individual and aggregate levels, to
see the context of these actions, to see where improvement is desired, and to assess
the impact of efforts at sales improvement.

Our proposed solution is to develop a data model that makes it easy to examine and
analyze customer journeys. The data model should also incorporate data described
and related to customers to produce a Customer 360 view. The model should support
queries about what events a customer journey does or doesn’t contain, as well as the
timing of such events.

46 | Chapter 3: See Your Customers and Business Better: 360 Graphs

Implementing the C360 + Journey Graph: A GraphStudio
Tutorial
The implementation of a C360 and customer journey graph we present below is
available as a TigerGraph Cloud Starter Kit. Starter kits are hands-on demos to teach
you how graph analytics can help you with different use cases. Each kit comes with
a graph schema, sample data, and queries. Don’t worry if this is your first time
using TigerGraph Cloud. We’ll show you how to sign up for a free account and to
deploy a free starter kit. Alternatively, if you have TigerGraph installed on your own
machine, we’ll tell you how to import the starter kit into your system. Then we’ll
simultaneously walk you through the design of the C360 graph and GraphStudio in
general.

Figure 3-3 maps out the two paths toward setting up a starter kit. In the following
sections, we’ll first tell you how to create a TigerGraph Cloud account. Then we’ll
walk you through the steps for getting and loading a starter kit, first for TigerGraph
Cloud users and then for TigerGraph on-premises users.

Figure 3-3. Setting up a TigerGraph Starter Kit

Implementing the C360 + Journey Graph: A GraphStudio Tutorial | 47

Create a TigerGraph Cloud Account
If this is your first time using TigerGraph Cloud, you need to set up an account. It’s
simple and free:

1. In a web browser, go to tgcloud.io.1.
2. Click the “Sign up” button and fill out the form. The sign-up form may ask2.

you to create an organization. An organization can contain and manage multiple
users and multiple databases under one account.

3. When you submit the form, TigerGraph Cloud will then ask you to go to your3.
email to verify your account. You now have a TigerGraph Cloud account!

In the next section, we’ll tell you how to create a TigerGraph Cloud database, with
your choice of starter kit.

Get and Install the Customer 360 Starter Kit
We are going to use the starter kit called “Customer 360 – Attribution and Engage‐
ment Graph.” If you are a TigerGraph Cloud user, you can get the starter kit as part of
a new database deployment. If you are running TigerGraph on your own computer,
you can download the starter kit files from the TigerGraph website and then upload
them into your TigerGraph instance.

The next two sections go over the details for these two options.

Deploy a cloud instance with a starter kit
When you log in to TigerGraph Cloud, the first page visible is the My Clusters page.
A cluster is a TigerGraph database deployment, with or without a graph schema or
data. Click the Create Cluster button, which will take you to the Create Cluster page
(shown in Figure 3-4).

48 | Chapter 3: See Your Customers and Business Better: 360 Graphs

https://tgcloud.io
http://www.tigergraph.com

Figure 3-4. TigerGraph Cloud Create Cluster menu

Then follow these steps:

1. Confirm the service tier for your cluster. On the Create Cluster page, you’ll see it1.
defaults to the free tier. Larger and more powerful clusters incur hourly charges.
For the exercises in this book, the free size should be fine. You can upgrade a
cluster after deploying it, if you wish.

2. Select a starter kit by use case. If the kit you want isn’t displayed, click on “View2.
all use cases” to see more choices. In this case, it’s “Customer 360 – Attribution
and Engagement Graph.” For the free tier, that’s it. In a few minutes, your
database instance will be ready.

3. If you decide to create a paid tier instance, then you have more choices to make:3.
cloud platform provider, instance size, region, disk size, and cluster configura‐
tion. You can follow this tutorial with the default values for all of these.

4. Once your cluster instance is ready, it will be listed on the My Clusters page.4.
Click its Tools button. From the menu that appears, select GraphStudio.

5. Continue to “Load data and install queries for a starter kit” on page 50.5.

Implementing the C360 + Journey Graph: A GraphStudio Tutorial | 49

Alternative: Import a starter kit into your TigerGraph instance
If you have TigerGraph software installed on your own machine, follow these steps to
get a starter kit:

1. Go to www.tigergraph.com/starterkits.1.
2. Find Customer 360—Attribution and Engagement Graph.2.
3. Download Data Set and the solution package corresponding to your version of3.

the TigerGraph platform.
4. Start your TigerGraph instance. Go to the GraphStudio home page.4.
5. Click Import An Existing Solution and select the solution package that you5.

downloaded.
6. Continue to “Load data and install queries for a starter kit” on page 50.6.

Importing a GraphStudio Solution will delete your existing data‐
base. If you wish to save your current design, perform a Graph‐
Studio Export Solution and also run a database backup as described
on the TigerGraph documentation site.

Load data and install queries for a starter kit
There are three additional steps needed to complete the installation of a starter kit. If
you know GraphStudio and just want to know how to install a starter kit, then follow
these steps:

1. Go to the Design Schema page. On the menu on the left, switch from the Global1.
view to the starter kit’s local graph view. It might be called MyGraph, or it might
have a customized name like AntiFraud.

2. Go to the Load Data page. Wait about five seconds until the Load Data button2.
on the left end of the top menu becomes active. Click the button and wait for the
data to finish loading. You can track the loading progress in the timeline display
at the lower right.

3. Go to the Write Queries page. Above the list of queries, click the Install All3.
Queries button and wait for the installation to complete.

50 | Chapter 3: See Your Customers and Business Better: 360 Graphs

http://www.tigergraph.com/starterkits
https://oreil.ly/LoDnj

An Overview of GraphStudio
TigerGraph’s GraphStudio is a complete graph solution development kit, covering
every stage in the process from developing a graph model to running queries. It
is organized as a series of views or pages, each one for a different task in the
development process.

Because this is our first time through GraphStudio together, we are going to walk
through all five stages: Design Schema, Map Data to Graph, Load Data, Explore
Graph, and Write Queries. At each stage, we will both explain the general purpose of
the page and guide you through details of the specific starter kit we are working with.
In future chapters, we will skip over most of the generalities and only talk about the
starter kit details.

If we were beginning with an empty database, we would need to do additional design
work, such as creating a graph model. Having a starter kit lets you skip most of this
and get right to exploring and querying an example dataset.

How to create a graph model in GraphStudio is just one of the
many topics covered in TigerGraph’s online documentation at
docs.tigergraph.com. The official TigerGraph YouTube channel is
also a valuable resource for tutorials.

Design a Graph Schema
The starter kit is preloaded with a graph model based on commonly used data objects
in Salesforce and similar CRM software. The name of the graph in this starter kit is
MyGraph. When you start GraphStudio, you are initially at the global graph level. You
are not yet working on a particular graph. In a TigerGraph database, the global level
is used to define data types that are potentially available to all users and all graphs.
See the section labeled “Global types” in Figure 3-5. A database can then host one or
more graphs. A graph can contain local types, and it can include some or all of the
global types. See graphs G1 and G2 in the figure.

Implementing the C360 + Journey Graph: A GraphStudio Tutorial | 51

https://docs.tigergraph.com

Figure 3-5. Global types, local types, and graphs in a TigerGraph database

To work on a graph, you need to select the graph, which moves you from the global
level to the local graph level. To switch to a local graph, click on the circular icon
in the upper left corner. A drop-down menu will appear, showing you the available
graphs and letting you create a new graph. Click on MyGraph (step 2). Just below
that, click on Design Schema to be sure we’re starting at the right place.

You should now see a graph model or schema like the one in Figure 3-6 in the main
display panel.

52 | Chapter 3: See Your Customers and Business Better: 360 Graphs

Figure 3-6. Graph schema for CRM data (see a larger version of this figure at https://
oreil.ly/gpam0306)

A graph schema defines the types of data objects to be stored in the database. If the
schema is depicted visually, then each data type is shown once. This schema has 8
vertex types and 14 edge types.

The central vertex type is Contact, which is a prospective buyer of the product. How‐
ever, a Contact is not just any prospective buyer, which reflects the fact that a person
buying a B2B product on behalf of a company is not making a spur-of-the-moment
decision. Instead, the person transitions through stages of the buying process. We call
the person’s flow through the buying process the customer journey.

One real-world person might show up more than once in the database. If the vendor
conducts a marketing Campaign, then persons who respond to the campaign show
up as CampaignMember vertices. Also, if a third party, a LeadSource, provides contact
information about a potential buyer, then the potential buyer shows up as a Lead. A
Salesperson engages a Lead to see if there is a realistic possibility of a sale. If there
is, then the Lead’s information is copied to a new vertex type called a Contact. This

Implementing the C360 + Journey Graph: A GraphStudio Tutorial | 53

https://oreil.ly/gpam0306
https://oreil.ly/gpam0306

Contact and their source Lead represent the same physical person but at different
stages of the customer journey.

Table 3-1 contains descriptions of all eight vertex types. In some cases, the description
of one vertex type talks about how it is related to another vertex type. For example,
an Account is “an organization that a Contact belongs to.” Looking at Figure 3-6,
you can see an edge type called belongs_to between Account and Contact. There
are 13 other edge types in the figure. The edge types have descriptive names, so if
you understand the vertex types, you should be able to figure out the meaning of the
edges.

Table 3-1. Vertex types in the Salesforce Customer 360 graph model

Vertex type Description
Account An organization that a Contact belongs to
Campaign A marketing initiative intended to generate Leads
CampaignMember A persona who responds to a Campaign
Contact A Lead who is now associated with a sales Opportunity
Industry A business sector of an Account

Lead A person who is a potential buyer of the product but is not yet associated with an Opportunity

LeadSource A channel through which a Lead finds out about the product
Opportunity A potential sales transaction, characterized by a monetary amount

Data Loading
In TigerGraph starter kits, the data is included, but it is not yet loaded into the
database. To load the data, switch to the Load Data page (step 1 of Figure 3-7), wait a
few seconds until the Load button in the upper left of the main panel becomes active,
and then click it (step 2). You can watch the progress of the loading in the real-time
chart at the right (not shown). Loading the 34K vertices and 105K edges should take
two minutes on the TGCloud free instances; it’s faster on the paid instances.

54 | Chapter 3: See Your Customers and Business Better: 360 Graphs

Figure 3-7. Loading data in a starter kit

Queries and Analytics
We will analyze the graph and run graph algorithms by composing and executing
queries in GSQL, TigerGraph’s graph query language. When you first deploy a new
starter kit, you need to install the queries. Switch to the Write Queries page (step 1
of Figure 3-8). Then click the Install All icon at the top right of the list of queries
(step 2).

Implementing the C360 + Journey Graph: A GraphStudio Tutorial | 55

Figure 3-8. Installing queries

Learning and Using GSQL

The GSQL examples in this book are intended to show you some of
the techniques to express informational and analytical queries of a
graph database. While the examples are written in GSQL, it is not
necessary for you to become fluent, nor do we even try to teach it
in a rigorous way. If you know basic SQL and are familiar with a
general-purpose language like Python, we believe you will be able
to follow our explanations of the queries with a little effort. When
we want to make a particular point about the GSQL language, we
will use a note box like this.

For our Customer 360 use case, we will discuss three queries:

Customer interaction subgraph
This query generates a subgraph that gives us a holistic view of the customer
journey. The subgraph embodies the interactions that the customer has with the
company’s campaigns. The query starts with a given customer of type Contact
vertex. From there, it collects Account, Opportunity, and CampaignMember verti‐

56 | Chapter 3: See Your Customers and Business Better: 360 Graphs

ces that the customer had interacted with. Furthermore, for each of the Campaign
Member elements, a Campaign is selected as well. Finally, the query returns the
resulting customer interaction subgraph.

Customer journey
This query finds all the CampaignMember elements that the customer has interac‐
ted with during a time period. The query starts with a given Contact and filters
for all the CampaignMember elements that have been in touch with the Contact
between a start time and end time. Unlike the first query, we don’t return a
subgraph with the connections between the Contact and CampaignMember. Here
we return a sorted list of CampaignMember vertices.

Similar contacts
This query returns contacts similar to a given Contact. If the given Contact
was successfully converted to a paying customer, this query can find additional
good candidates for conversion. This query implements the Jaccard similarity
measure in GSQL to calculate the similarity between a given Contact and other
Contact vertices who share a similar Campaign. Then the contacts with the
highest similarity score will be returned.

For each of the three queries, we’ll give a high-level explanation, directions for
running them in TigerGraph’s GraphStudio, what to expect as a result, and a closer
look at some of the GSQL code in the queries.

Customer interaction subgraph

The customer_interactions query takes one argument: a customer who is a natural
person of type Contact. First, we select all the Account identities that belongs_to the
given Contact. Then we find all the Opportunity vertices connected to the Contact.
In addition, the Contact vertex has a connection to one or more CampaignMember,
who is a natural person that is part of a Campaign. Figure 3-9 illustrates the relation‐
ships uncovered by this query.

Implementing the C360 + Journey Graph: A GraphStudio Tutorial | 57

Figure 3-9. Contact vertex and edges

Do: Run the GSQL query customer_interaction by selecting the query name from
the list (step 1 in Figure 3-10) and then clicking the Run icon above the code panel
(step 2). This query has one input parameter: the “Contact” field lets us fill in a name
of the customer. If you look at the query code pane (Figure 3-10), you will see a
comment that suggests an example value for Contact: Sam-Eisenberg.

58 | Chapter 3: See Your Customers and Business Better: 360 Graphs

Figure 3-10. Running the customer_interaction query

Use your mouse to copy and paste values from the code window
into the query parameter input boxes.

The output will appear in the result panel below the query-editing panel. The graph
may look scrambled initially. To clean up the appearance, click the Change Layout
(force) button in the lower right corner of the output and select force. Then the
output should look something like Figure 3-11.

Implementing the C360 + Journey Graph: A GraphStudio Tutorial | 59

Figure 3-11. The customer_interaction query result with input Sam-Eisenberg (see a
larger version of this figure at https://oreil.ly/gpam0311)

Now we will look at how the GSQL query cust_journey_subgraph works. Refer to
the code block that follows:

CREATE QUERY customer_interactions(VERTEX<Contact> customer) {
/*
 Finds the Account, Opportunity, CampaignMembers, and Campaigns
 connected to the given customer.

 Sample input:
 customer: Sam-Eisenberg
*/
 SetAccum<EDGE> @@edges_to_display; // accumulator declaration(s)

 cust = { customer }; // make into a vertex set

 // Get the customer's connected Accounts
 accts = SELECT t FROM cust:s -(belongs_to>:e)- Account:t
 ACCUM @@edges_to_display += e;

 // Get the customer's connected Opportunities
 opps = SELECT t FROM cust:s -(Has_Role>:e)- Opportunity:t
 ACCUM @@edges_to_display += e;

 // Get the customer's connected CampaignMembers
 campMems = SELECT t FROM cust:s -(is_connected_to>:e)- CampaignMember:t
 ACCUM @@edges_to_display += e;

 // Get the Campaigns connects to those CampaignMembers
 campaigns = SELECT t FROM campMems:s -(is_part_of>:e)- Campaign:t
 ACCUM @@edges_to_display += e;

60 | Chapter 3: See Your Customers and Business Better: 360 Graphs

https://oreil.ly/gpam0311

 // Print (display) the collected vertices and connecting edges.
 interactions = accts UNION opps UNION campMems UNION campaigns;
 PRINT cust, interactions;
 PRINT @@edges_to_display;
}

In the first line, we define the name of the query and its input parameters. To find
a customer subgraph, we need one parameter for the customer, a vertex of type
Contact. Next we declare some variables. At we define a variable, a set of edges
called @@edges_to_display.

GSQL Query Structure

A GSQL query is a named parameterizable procedure. The main
body is a sequence of SELECT statements that traverse and analyze
the graph one or more hops at a time. The inputs and outputs of a
SELECT statement are vertex set variables. The output of the query
as a whole is explicitly stated with PRINT statements.

To begin traversing the graph, we need to define a vertex set that contains our
starting point or points. At we create a vertex set called cust consisting of the
Contact from the input parameters. Then at we use a SELECT statement to start
to gather the customer’s interactions. The clause FROM cust:s -(belongs_to:e)-
Account:t means traverse from cust across belongs_to edges to Account vertices.
The notations :e and :t define alias variables for the edges and target vertices,
respectively. The ACCUM clause acts like a FOREACH for the alias variables. In effect, each
e edge that fits the FROM pattern is added to the @@edges_to_display accumulator.
Lastly, the initial clause accts = SELECT t means that this statement returns a vertex
set called accts consisting of the t alias vertices.

GSQL Accumulators

Accumulators, a unique feature of the GSQL language, are data
objects that have a special operation called accumulate, indicated
by the += operator. The exact meaning of += varies depending on
the accumulator type, but it always is used to accept additional
input data to update the accumulator’s external value. Accumula‐
tors can accept multiple asynchronous accumulate operations, and
thus they are ideal for concurrent/parallel processing. The @@ prefix
indicates a global accumulator. A @ prefix indicates a set of local
(also known as vertex-attached) accumulators. Local means each
vertex in the query has its own independent instance of this accu‐
mulator. For example, @interact_size is a local accumulator of
type SumAccum<INT>. SumAccum<INT> is typically used to count.

Implementing the C360 + Journey Graph: A GraphStudio Tutorial | 61

At we do something similar, but here we select the vertices and edges where
the customer has a role in creating an Opportunity. The selected vertices are
in the variable Opps; the selected edges are added to @@edges_to_display. Next,
at we find the CampaignMember vertices that are connected to the customer
and update @@edges_to_display again with the results. We then start from the
campaign_members we selected in the previous step (FROM campMems) and find the
vertices and edges of each CampaignMember that is part of a Campaign, then update
@@edges_to_display again with the results at . In we combine the vertices
selected in steps , , , and into one variable called interactions. Finally,
we print (output) the input customer, its interactions, and their connecting edges
(@@_edges_to_display). When the output contains vertices or edges, GraphStudio
will display them graphically in the pane below the code pane. The output pane’s
menu has options to format the output as JSON or tables as well.

Customer journey

The customer_journey query shows all CampaignMember and Account vertices that
have a relationship with the customer during a given time period. Here we want to
see more than just what marketing interactions a customer had; we want to see the
sequence of activities. Let’s take a look at the GSQL implementation.

This GSQL query takes four parameters:

CREATE QUERY customer_journey(VERTEX<Contact> customer,
 SET<STRING> campaign_type_set, DATETIME start_time, DATETIME end_time) {

The first parameter is a vertex of type Contact and represents the customer that we
are interested in. The second parameter is a list of campaign types to include. Leaving
it empty will include all campaign types. The third and fourth parameters are of
DATETIME types, and we use these parameters to determine the time window in which
our query should be executed.

Next we take advantage of local accumulators to act like instance variables of a vertex
class. We will add three string properties to each selected CampaignMember:

SumAccum<STRING> @cam_type, @cam_name, @cam_desc;

First we select the Account to which our target customer belongs:

 start = { customer };
 account = SELECT t FROM start -(belongs_to>)- Account:t;

Then we select all CampaignMember vertices that are connected to the customer within
the given time window:

campaign_members =
 SELECT c
 FROM start-(is_connected_to>)- CampaignMember:c

62 | Chapter 3: See Your Customers and Business Better: 360 Graphs

 WHERE c.CreatedDate >= start_time
 AND c.CreatedDate <= end_time;

Next we check that each of these CampaignMembers belongs to one of the campaign
types designated in the input parameters. To do this, we need to traverse from each
CampaignMember to its Campaign. While we are at it, we copy some information from
the Campaigns:

 CM =
 SELECT c FROM campaign_members:c -(is_part_of>)- Campaign:t
 WHERE campaign_type_set.size() == 0
 OR t.Campaign_Type IN campaign_type_set
 ACCUM c.@cam_type = t.Campaign_Type,
 c.@cam_name = t.Name,
 c.@cam_desc = t.Description
 ORDER BY c.FirstRespondedDate;

The ORDER BY clause at the end sorts the selected CampaignMember vertices by their
effective date.

The comments at the beginning of the query suggest some inputs to try. Click the
Run Query button, then copy and paste the suggested inputs into the parameter
text boxes on the left. For campaign_type_set, click the + symbol to add a value
to the set. For the datetime parameters start_time and end_time, notice that Graph‐
Studio accepts values in YYYY-MM-DD format. Scroll down if needed to get to
the Run Query button. The output should include Contact Sam-Eisenberg, Account
VRG-Payments, and seven CampaignMember elements. These are the components of
Sam’s customer journey during the given time period.

To see the time sequence of the journey, switch to the JSON or table view output
modes. Or you can run the customer_journey_path query, whose output is shown
in Figure 3-12. It is identical to the customer_journey query, except for several extra
lines of GSQL code, which insert directed edges from one CampaignMember vertex to
the next. The code is a bit complex for this early in the book, so we won’t describe
how it works. Also note that you need to run customer_journey_path twice: once to
create the path edges, and again in order to see them.

Implementing the C360 + Journey Graph: A GraphStudio Tutorial | 63

Figure 3-12. Output of customer_journey_path query for Sam-Eisenberg (see a larger
version of this figure at https://oreil.ly/gpam0312)

Similar customers
Before we implement similarity measures, we need to determine first for which
attribute we want to compute the similarity. In our case, we want to compute the sim‐
ilarity for customers based on participation in similar sets of marketing campaigns.
To measure this, we use Jaccard similarity. Jaccard similarity is not exclusively appli‐
cable for graph-structured data. It is a way to measure the similarity between two sets,
based on how many items that belong to one set also belong to the other set, divided
by the total number of distinct items appearing in either set. In the case of a graph,
every vertex has a set of neighboring vertices. So graph-based Jaccard similarity
measures the overlap of the neighbor set of one vertex with the neighbor set of
another vertex. In other words, how many common neighbors are there, relative to
the total number of neighbors?

Our situation is a little more complicated, because we want to assess the similarity
of associations to campaigns; however, Campaigns are two hops away from Contacts
rather than being directly connected. Furthermore, we allow the user to filter by types
of campaigns to count.

64 | Chapter 3: See Your Customers and Business Better: 360 Graphs

https://oreil.ly/gpam0312

Let’s walk through the GSQL code for the similar_contacts query. This query
accepts three parameters. The first parameter source_customer is a vertex of type
Contact and represents the customer for whom we want to find similar customers.
The second parameter is the set of campaign types (strings) that the user wants to
consider. The third parameter is an integer value to determine how many similar
customers we want to return:

CREATE QUERY similar_contacts(VERTEX<Contact> source_customer,
 SET<STRING> campaign_types, INT top_k = 5) {

We start with declaring four accumulators. The first three are integer counts: the
number of campaigns for our input customer (@@size_A), the number of campaigns
for each candidate contact (@size_B), and the number of campaigns that they have
in common (@size_intersection). There’s only one input, so @@size_A is a global
accumulator. The others are vertex-attached local accumulators. We also have a FLOAT
type local accumulator to store the computed similarity value:

 SumAccum<INT> @@size_A, @size_B, @intersection_size;
 SumAccum<FLOAT> @similarity;

Then we get the value of @@size_A using the outdegree() function, specifying edge
type is_connected_to:

 A = SELECT s
 FROM A:s
 ACCUM @@set_size_A += s.outdegree("is_connected_to");

Now we traverse from source_customer across two hops to go first to CampaignMember
and then the Campaign vertices. This corresponds to steps 1 and 2 in Figure 3-13. Note
the WHERE clause for checking the campaign types:

 campaign_mem_set =
 SELECT t
 FROM A:s -(is_connected_to>:e)- CampaignMember:t;

 campaign_set =
 SELECT t
 FROM campaign_mem_set:s -(is_part_of>:e)- Campaign:t
 WHERE campaign_types.size() == 0 OR (t.Campaign_Type IN campaign_types);

Implementing the C360 + Journey Graph: A GraphStudio Tutorial | 65

Figure 3-13. Overview of steps for selecting the similar customers to calculate Jaccard
similarity score

The next phase is a great example of the graph-based approach to analytics. This
query’s task is “find all the Contacts B that have relationships similar to those
of Contact A.” Rather than searching all possible Contacts and then comparing
their relationships, we go to A’s related entities, then walk backward from there to
candidate Contacts. These are steps 3 and 4 in Figure 3-13. The reasoning is that
this forward-then-backward walk across the relationships automatically filters out
candidates that have nothing in common. And if we are clever, we can measure the
degree of similarity while we are traversing.

Compare the GSQL code for step 3 with the code for step 2. Notice how the direc‐
tionality indicator for the directed edge changed from a > suffix to a < prefix:

 rev_campaign_mem_set =
 SELECT t
 FROM campaign_set:s -(<is_part_of:e)- CampaignMember:t;

The last hop is more complicated because it incorporates the Jaccard computation.
The hop itself is as expected, with a WHERE clause to exclude going back to our
source_customer:

 B = SELECT t
 FROM rev_campaign_mem_set:s -(<is_connected_to:e)- Contact:t
 WHERE t != source_customer

66 | Chapter 3: See Your Customers and Business Better: 360 Graphs

3 “The Healthcare Data Explosion,” RBC Capital Markets, accessed May 21, 2023, https://
www.rbccm.com/en/gib/healthcare/episode/the_healthcare_data_explosion.

Recall that an ACCUM clause acts like a FOREACH block iterated across every path that
satisfies the preceding FROM-WHERE clauses. The following code incrementally counts
the size of the intersection between A’s and B’s campaign sets, and also sets @size_B
for this particular Contact:

 ACCUM t.@intersection_size += 1,
 t.@size_B = t.outdegree("is_connected_to")

Now we can calculate the Jaccard similarity. As its name implies, a POST-ACCUM
clause usually takes place after an ACCUM clause. The two most important rules about
POST-ACCUM are 1) it can use the accumulator results of the preceding ACCUM clause,
and 2) it can only work with vertex variables, not edge variables. We use one of the
standard formulations for Jaccard similarity. The denominator is equivalent to the
number of unique items in sets A and B. The 1.0 in the numerator is to perform
floating point arithmetic instead of integer arithmetic:

 POST-ACCUM t.@similarity = t.@intersection_size*1.0/
 (@@size_A + t.@size_B - t.@intersection_size)

Finally, we order the resulting similarity score from highest to lowest, and we only
take the top_k results to print:

 ORDER BY t.@similarity DESC
 LIMIT top_k;

 PRINT @@size_A;
 PRINT B[B.FirstName, B.LastName, B.@similarity, B.@size_B];

We went through the implementation of Jaccard similarity both to show you how
easily some graph algorithms can be implemented in GSQL and to help you under‐
stand the approach if you want to write your own queries and analytics. TigerGraph
provides an extensive library of prewritten graph data science algorithms, which we
will present later in the book.

Case 2: Analyzing Drug Adverse Reactions
In our second use case, we seek to analyze the adverse reactions to drug treatments.

Today’s healthcare system covers 30% of the world’s data volume, and its compound
annual growth is projected to be 36% by 2025.3 This data collection ranges from
external sources such as the US Food and Drug Administration (FDA) and National
Databases Medical Associations to privately owned datasets from health insurance
companies. Organizations mine this data for valuable insights to create targeted

Case 2: Analyzing Drug Adverse Reactions | 67

https://www.rbccm.com/en/gib/healthcare/episode/the_healthcare_data_explosion
https://www.rbccm.com/en/gib/healthcare/episode/the_healthcare_data_explosion

content and engagement campaigns, improve health insurance plans, and develop
medicines. Developing better medical therapies is our focus for this use case.

When developing medicines, it is vital to have clear insight into the composition of
drugs, how they interact with one another, and what side effects they might cause.
Therefore, the FDA requires every drug manufacturer to monitor how its drugs are
being used with other drugs and report on any adverse reaction.

Analysts and researchers want to find relationships among various drugs, patients
who use them, and the possible side effects. Do doctors prescribe the same drug
to people in a particular postal district, or are their assessments mainly built upon
patients who went to the same college? When a patient reports an adverse reaction
to a given drug, other patients might also be in danger, given their drug interaction
history. Without a view of how these drug interactions occur and to whom the
drugs prescriptions are given, research in this field becomes challenging, and it could
threaten public health when vital links between drugs and side effects are overlooked.

Solution: Drug Interaction 360 Graph
The growing amount of healthcare data brings challenges in combining external and
internal data sources at a large scale and presenting this in a meaningful way. The
applications in this domain require an approach that can not only handle this large
amount of data but also find hidden patterns among the various data sources.

Graph databases are an ideal data platform for the discovery and analysis of drug
interactions. With a graph database, we can form a 360 view of key entities and con‐
nect the dots to expose all possible correlations among patients, the drug interactions
that have incurred, and the manufacturers of those drugs.

In contrast, relational and NoSQL databases store data in separate tables and rely
on the analyst’s domain expertise to choose which tables to join, and each join is an
expensive operation. The discovery of interactions and correlations is limited to the
particular cases that the analysts checked by forming particular sequences of table
joins. For this case, a tabular structure is less conducive to scientific discovery than a
graph structure.

Implementation
To illustrate a drug interaction 360 graph, we will use the TigerGraph Cloud Starter
Kit called “Healthcare Graph (Drug Interaction/FAERS).” To follow along, see the
earlier instructions for how to deploy a TigerGraph Cloud Starter Kit. Load the data
and install the queries.

The data we are using for this use case is publicly available from the US FDA. It
contains quarterly data from the FDA’s Adverse Event Reporting System (FAERS),

68 | Chapter 3: See Your Customers and Business Better: 360 Graphs

including demographic and administrative information on the drug, patient out‐
come, and reaction from case reports. The FDA releases the data as seven tables. The
documentation includes an entity-relationship diagram, which is suggestive of a two-
hub 360 graph. However, investigating this data using relational database techniques
would require creating many join tables. With graph databases, we can traverse these
relationships much easier.

Graph Schema
To improve the visibility and analysis of the data, we propose to transform the seven
tables into 10 vertex types and 10 edge types. We split the Drug table into Drug and
DrugSequence vertex types, and we split the Demographic table into ReportedCase,
Patient, and PharmaCompany tables. These splits give us the agility to shift our focus
as needed and to more easily see the interplay between different factors. For every
ReportedCase, we can find information about the patient, the drug manufacturer, the
patient’s reaction, the source of the report, the outcome, and the various drugs the
patient has been taking. For every DrugSequence, we can find the related drug, the
indication, and the patient’s therapy.

Table 3-2 describes the 10 vertex types, and Figure 3-14 shows how they are connec‐
ted. The starter kit contains data from one calendar quarter. In total, there are 1.87M
vertices and 3.35M edges.

Table 3-2. Vertex types in the Drug Information model

Vertex type Description Instances
DrugSequence A sequence of Drug elements 689,312
Drug A drug that is part of a DrugSequence 40,622
Indication An indication (medical condition) that can be treated with a DrugSequence 422,145
Therapy A therapy where the DrugSequence is used 268,244
ReportedCase A reported case of side effects 211,414
Patient A person who reported a case 211,414
Outcome A result after assessment of a ReportedCase 7
ReportSource A source type for a ReportedCase 9
Reaction A reaction from a ReportedCase 9,791
PharmaCompany A pharmaceutical company that manufactures a Drug 7,740

Implementation | 69

Figure 3-14. Graph schema of Drug Information data (see a larger version of this figure
at https://oreil.ly/gpam0314)

Queries and Analytics
The drug interaction starter kit comes with three queries as examples of drug interac‐
tion analysis. From these examples, a studious analyst can see how to construct other
queries and even more complex queries.

Find similar reported cases based on reactions
Finding cases with similar sets of reactions can lead to understanding root
causes. This query starts from a given reported case and calculates its similarity
to other cases, based on the similarity of reactions of the patients. Then it returns
the top-scoring similar cases.

Most reported drugs for a company
Pharmaceutical companies want to know which of their drugs are receiving the
most reports of adverse reactions. Government regulatory agencies might also
want to know this. This query performs that calculation for them.

Top side effects for top drugs
Pharmaceuticals and regulators want to know not only which drugs are being
reported but also what the top side effects are. This query selects the topmost
Drug type for a given Company and counts how many times each Reaction for
that drug is reported.

70 | Chapter 3: See Your Customers and Business Better: 360 Graphs

https://oreil.ly/gpam0314

Find similar reported cases
Things that have similar characteristics are similar, but how exactly do we measure
this? You must decide what characteristics matter and how to assess the strength
of similarity. In a graph, an entity’s characteristics include not only its attributes
but also its relationships. Looking at Figure 3-14, you can see that ReportedCase is
surrounded by relationships to six other vertex types, which are all potential similar‐
ity factors. It also has an edge type similarCaseTo, where the results of similarity
calculations can be stored.

The query implements relationship-based similarity scoring: jaccard_nbor_reac
tion. The query’s first argument, source, is the ReportedCase of interest. The etype
argument specifies what type of relationships to consider. The top_k argument deter‐
mines how many reported cases the query returns, and sampSize invokes sampling
if each instance of a Reaction (or other characteristic) has more than this threshold
number of related cases.

Once we specify which characteristics to consider, we still need to apply a formula
for measuring similarity. This query uses Jaccard similarity, the most commonly used
measure when the property is categorical rather than numeric. We only know if a
reaction occurs, not its strength, so the data is categorical.

CREATE QUERY jaccard_nbor_reaction(VERTEX source, STRING etype
 ="hasReactions", INT top_k=100, INT sampSize=100) FOR GRAPH faers {
 //example: ReportedCase=100640876
/*
Calculates the Jaccard Similarity between a given vertex and every other
vertex. A simplified version of the generic purpose algorithm
jacccard_nbor_ss in the GSQL Graph Data Science Library
https://github.com/tigergraph/gsql-graph-algorithms
*/
 SumAccum<INT> @intersection_size, @@set_size_A, @set_size_B;
 SumAccum<FLOAT> @similarity;
 SumAccum<INT> @@t_Size;

 Start (ANY) = {source};
 Start = SELECT s
 FROM Start:s
 ACCUM @@set_size_A += s.outdegree(etype);

 Neighbors = SELECT t
 FROM Start:s-(etype:e)-:t;

Similar to the first query in our first case example, we need to define the vertices
where we start our traversal. We do this at . Then to compute the Jaccard calcula‐
tion, we need the size of the source vertex’s neighbor set, which we obtain by applying
the out_degree function and specifying etype at . At , we collect Neighbors by
traversing from Start over every etype edge.

Implementation | 71

The expression Start:s-(etype:e)-:t, at , represents a traversal pattern in the
graph. This particular pattern means:

1. Begin with a member of the set Start.1.
2. Connect to an edge of type etype.2.
3. Through that edge, arrive at any target vertex.3.

The expression also defines three aliases for the three parts of the pattern: s, e, and
t. The result of the FROM clause is a set of tuples (s, e, t) that satisfy the pattern. The
alias t represents a member of the set of target vertices. These aliases are local; they
can only be used within this SELECT block. They are unrelated to the aliases in other
SELECT blocks.

At we select other vertices. We do this by checking if etype is reactionTo; then
Neighbors will comprise all the Reactions of the given source ReportedCase. Then
we build a set of ReportedCases by traversing from the Neighbors across etype edges
again. If the out degree of a neighbor is greater than sampSize, we traverse only a
sample of the connecting edges. We exclude the source vertex from the selection at .

 Others = SELECT t
 FROM Neighbors:s -(:e)- :t
 SAMPLE sampSize EDGE when s.outdegree(etype) > sampSize
 WHERE t != source
 ACCUM t.@intersection_size += 1,
 t.@set_size_B = t.outdegree(etype)
 POST-ACCUM t.@similarity = t.@intersection_size*1.0/
 (@@set_size_A + t.@set_size_B - t.@intersection_size),
 @@tSize += 1
 ORDER BY t.@similarity DESC
 LIMIT top_k;

 PRINT Others;
 PRINT @@t_Size, Others.size();

This pattern (traverse to neighbors, traverse back along the same
edge type, exclude the starting vertex) is a common technique to
find entities that have something in common with the starting
entity. It is the graph-based technique for collaborative filtering
recommendation.

At we compute the Jaccard similarity score between the source vertex and each
member of Others. Given two sets A and B, Jaccard(A, B) is defined as:

(intersection of A and B) / (size of A + size of B – intersection of A and B)

72 | Chapter 3: See Your Customers and Business Better: 360 Graphs

The efficient GSQL implementation is a little subtle. We will not go into line-by-line
detail, but we will point out two paradigms:

• In our case, the sets are composed of neighbors of A and B. We do not start•
from sets A and B and then compute their intersection. We start from A, go
to its neighbors, then go to their neighbors. This finds all B sets such that
intersection(A,B) is not empty.

• We use distributed processing to perform operations on multiple members of•
a set concurrently. The ACCUM and POST-ACCUM clauses in GSQL are implicit
FOREACH loops, specifying what to do for each member of the iteration sets. The
order of iteration is unspecified. The TigerGraph compute engine may operate on
multiple iterations concurrently.

An ACCUM clause acts like a FOREACH loop on each set of connected vertices and edges
that satisfy the preceding FROM/SAMPLE/WHERE clauses, that is, on each pattern tuple.
In this SELECT block, s refers to a member of Neighbors, which is a Reaction, and
t refers to a ReportedCase having that Reaction. A POST-ACCUM clause is another
FOREACH loop, but it can only operate on one vertex alias (e.g., either s or t).

At we order the Others vertices by descending similarity score and then prune the
set to include only the top_k vertices. Finally, we print all the vertices in Others and
the @@t_Size value.

Running the query with suggested source case 100640876 and then viewing the
results in tabular form, we discover three ReportedCase instances with a perfect
similarity score of 1: 103126041, 101749293, and 102852841. Then there are several
others with similarity scores of 0.5.

Most reported drug for a company

The most_reported_drugs_for_company query takes three parameters. The first
parameter, company_name, selects the company for which we want to find the topmost
reported drugs. The second parameter k determines how many drug types we wish to
return. Lastly, the third parameter filters DrugSequence elements with the given role
value:

CREATE QUERY most_reported_drugs_for_company(
 STRING company_name="PFIZER",INT k=5, STRING role="PS") {
 // Possible values for role: PS, SS, I, C
 // PS = primary suspect drug, SS = secondary suspect drug
 // C = concomitant, I = interacting

 // Keep count of how many times each drug is mentioned.
 SumAccum<INT> @num_Cases;

Implementation | 73

Reflect on the words “most reported drug for a company.” We can logically conclude
that the query must traverse ReportedCase, Drug, and PharmaCompany vertices. Take a
look back at Figure 3-14 to see how these vertex types are connected:

Drug – DrugSequence – ReportedCase – PharmaCompany

There are three hops from Drug to PharmaCompany; our query will perform its work in
three stages. Composing GSQL as multistage procedures instead of multiple separate
queries enables the use of accumulators as temporary storage values for both perfor‐
mance and functionality.

First, we find all the ReportedCase vertices that relate to the company given as an
input parameter. Drilling down: we build a vertex set that contains all the Company
vertices, because GSQL requires that a graph traversal begin with a vertex set. Then
we select all the ReportedCase vertices that link to a Company vertex, as long as that
company’s name matches the company_name argument:

// 1. Find all cases where the given pharma company is the 'mfr_sndr'
 Company = {PharmaCompany.*};
 Cases = SELECT c
 FROM Company:s -(relatedTo:e)- ReportedCase:c
 WHERE s.mfr_sndr == company_name;

We then traverse from the selected ReportedCase vertices from the set that we collected
above to their associated DrugSequence vertices. After that, we filter the DrugSequence
set to only include those whose role matches the query’s role argument:

// 2. Find all drug sequences for the selected cases.
 DrugSeqs = SELECT ds
 FROM Cases:c -(hasSequences:e)- DrugSequence:ds
 WHERE (role == "" OR ds.role_cod == role);

In the final part of the code, we connect the DrugSequence vertices that we selected
in the second part with their associated Drug vertices. Of course, we need to do more
than just find the drugs. We count how many cases feature a particular drug, then
sort the drugs by decreasing count, and select the k most frequently mentioned drugs:

// 3. Count occurrences of each drug mentioned in each drug sequence.
 TopDrugs = SELECT d
 FROM DrugSeqs:ds -(hasDrugs:e)-> Drug:d
 ACCUM d.@num_Cases += 1
 ORDER BY d.@num_Cases DESC
 LIMIT k;

 PRINT TopDrugs;
}

Running this query with default input values (company_name="PFIZER", k=5,

role="PS"), we get the drugs Lyrica, Lipitor, Chantix, Celebrex, and Viagra. Looking

74 | Chapter 3: See Your Customers and Business Better: 360 Graphs

at the JSON or tabular output, we see the number of cases are 2682, 1259, 1189 ,1022,
and 847, respectively.

Top side effects for top drugs

The query top_side_effects_for_top_drugs returns the top side effect for the most
reported Drug of a given Company. Like the previous query, it also wants to find the
most reported drug of a company, but it does additional work to count the side
effects. Its parameter list looks the same as that of most_reported_drugs_for_com
pany; however, here k refers to not only the topmost reported drugs but also the
topmost frequent side effects:

CREATE QUERY top_side_effects_for_top_drugs(STRING company_name="PFIZER",
 INT k=5, STRING role="PS") FOR GRAPH faers SYNTAX v2 {
 // Possible values for role: PS, SS, I, C
 // PS = primary suspect drug, SS = secondary suspect drug
 // C = concomitant, I = interacting

 // Define a heap which sorts the reaction map (below) by count.
 TYPEDEF TUPLE<STRING name, INT cnt> tally;
 HeapAccum<tally>(k, cnt DESC) @top_Reactions;

 // Keep count of how many times each reaction or drug is mentioned.
 ListAccum<STRING> @reaction_List;
 SumAccum<INT> @num_Cases;
 MapAccum<STRING, INT> @reaction_Tally;

As we did for the previous query, let’s look at the name and description of the query
to understand what vertex and edge types we must traverse. We can see that we need
to include ReportedCase, Drug, and PharmaCompany, as well as Reaction (side effect).
This sets up a Y-shaped graph traversal pattern:

Drug – DrugSequence – ReportedCase – PharmaCompany
 \– Reaction

This query has five stages. Stages 1, 3, and 4 of this query are the same or are slightly
enhanced versions of Stages 1, 2, and 3 in the most_reported_drugs_for_company
query.

Stage 1 is the same as Stage 1 of most_reported_drugs_for_company—find all the
ReportedCase vertices that relate to the company given as an input parameter:

 // 1. Find all cases where the given pharma company is the 'mfr_sndr'
 Company = {PharmaCompany.*};
 Cases = SELECT c
 FROM Company:s -(relatedTo:e)- ReportedCase:c
 WHERE s.mfr_sndr == company_name;

Implementation | 75

Stage 2 is new: now that we have a set of ReportedCase vertices, we can count their
associated Reactions. We traverse all the ReportedCase – Reaction edges and then
add each reaction type r.pt of a case c to a string list attached to that case c:

// 2. For each case, attach a list of its reactions.
 Tally = SELECT r
 FROM Cases:c -(hasReactions:e)- Reaction:r
 ACCUM c.@reaction_List += r.pt;

In Stage 3, we then traverse from the selected ReportedCase vertices from Stage 1
to their associated DrugSequence vertices. We perform the traversal first, and then
filter the DrugSequence set to include only those whose role matches the query’s role
argument. After that, we copy the list of reactions attached to ReportedCase vertices
to their associated DrugSequences. This last step is a GSQL technique to move data to
where we need it:

// 3. Find all drug sequences for the selected cases, and transfer
 // the reaction list to the drug sequence.
 DrugSeqs = SELECT ds
 FROM Cases:c -(hasSequences:e)- DrugSequence:ds
 WHERE (role == "" OR ds.role_cod == role)
 ACCUM ds.@reaction_List = c.@reaction_List;

In Stage 4, we connect the DrugSequence vertices selected in Stage 2 with their
associated Drug vertices. Besides counting the number of cases for a drug, we also
count the occurrences of each Reaction:

// 4. Count occurrences of each drug mentioned in each drug sequence.
 // Also count the occurrences of each reaction.
 TopDrugs = SELECT d
 FROM DrugSeqs:ds -(hasDrugs:e)- Drug:d
 ACCUM d.@num_Cases += 1,
 FOREACH reaction in ds.@reaction_List DO
 d.@reaction_Tally += (reaction -> 1)
 END
 ORDER BY d.@num_Cases DESC
 LIMIT k;

Finally, in Stage 5, we take only the top k side effects. We do this by counting each
reaction in tally, sorting them in descending order, and returning the top ones:

// 5. Find only the Top K side effects for each selected Drug.
 TopDrugs = SELECT d
 FROM TopDrugs:d
 ACCUM
 FOREACH (reaction, cnt) IN d.@reaction_Tally DO
 d.@top_Reactions += tally(reaction,cnt)
 END
 ORDER BY d.@num_Cases DESC;

 PRINT TopDrugs[TopDrugs.prod_ai, TopDrugs.@num_Cases,

76 | Chapter 3: See Your Customers and Business Better: 360 Graphs

 TopDrugs.@top_Reactions];
}

If you run this query with the default inputs (which are the same as those of
the previous query), the visual output looks the same. The difference is the Top
Drugs.@top_Reactions accumulator. The best way to see this is to look at the JSON
output. For Lyrica, the most reported drug from Pfizer, we have the following values:

 "TopDrugs.@top_Reactions": [
 { "cnt": 459,"name": "Pain"},
 { "cnt": 373, "name": "Drug ineffective" },
 { "cnt": 167, "name": "Malaise" },
 { "cnt": 145, "name": "Feeling abnormal" },
 { "cnt": 145, "name": "Pain in extremity" }
],

Chapter Summary
In this chapter, we delved into two use cases to demonstrate the power of graphs
to help users see the relationships in their data more clearly and completely. We intro‐
duced TigerGraph Starter Kits—demonstration databases and queries, preinstalled on
TigerGraph Cloud instances—that show the basics of a variety of different use cases.
We walked through the process of obtaining and installing a Customer 360 starter
kit. At the same time, we walked through the first several steps of using GraphStudio,
TigerGraph’s graphical user interface.

We also introduced you to GSQL, the procedural SQL-like graph query language
used by the TigerGraph graph database. Readers who know SQL and a conventional
programming language should be able to learn GSQL without much trouble. To
demonstrate how GSQL can help our analysis with graphs, we delved into two
use cases. In the first use case, we defined a customer journey and described how
sales groups benefit from recording and analyzing them. We then showed how a
Customer 360 graph provides a powerful and flexible way to integrate customer data,
which can then be represented as customer journeys. We walked through the three
GSQL queries, which explore and analyze the customer journeys. In the second use
case, we showed how a 360 graph can be used to show all the possible interactions
and correlations among drugs used for medical treatment. Such analysis is vital for
detecting and then taking action on adverse side effects.

Chapter Summary | 77

CHAPTER 4

Studying Startup Investments

In this chapter, we will dive into the world of startup investments. This real-world
use case shows us how three of the six graph powers help us to reveal high-potential
investment opportunities. The first graph power, connecting the dots, allows us to
view how various actors in the investment landscape are connected. The second
graph power, looking deep, offers investors a method to include connected infor‐
mation about those actors in our analysis. The third graph power, weighing and
predicting, enables us to utilize past funding events and investment portfolios to
predict the success rate of future investments.

After completing this chapter, you should be able to:

• Explain how connecting the dots, looking deep, and weighing and predicting•
address search and analysis needs

• Model and analyze startup investment opportunities•
• Traverse multihop relationships to filter deeper connected information•
• Read and understand more advanced GSQL queries•

Goal: Find Promising Startups
Investing in a startup is an exciting and lucrative way of building wealth. Investors
poured over $156 billion into US startups in 2020. Those startups generated over

79

1 Alex Wilhelm, “In 2020, VCs Invested $428M into US-Based Startups Every Day,” TechCrunch, January 19,
2021, https://techcrunch.com/2021/01/19/in-2020-vcs-invested-428m-into-us-based-startups-every-day.

2 Sandeep Babu, “STARTUP STATISTICS—The Numbers You Need to Know,” Small Business Trends, March
28, 2023, https://smallbiztrends.com/2022/12/startup-statistics.html.

$290 billion of liquidity.1 However, 9 out of 10 startups will fail, and with only 40%
becoming profitable, it becomes a challenge to bet on the right horse.2

Startups start with a founding team consisting of only a few members. Over time, as
a startup goes through different development stages, its product improves, and the
team grows. To fund these developments, the startup needs money from investors.
From the perspective of investment, one way to identify which startup is a proper
candidate to finance is by looking at the composition of the startup team and its orga‐
nization. Startups that have the right people at the right places in their organizations
tend to have higher chances of success. Therefore, startups led by founders with a
positive track record of building up companies are more likely to succeed in other
companies. Another way to assess the investment opportunity is by looking at the
startup’s existing investors. Investors with a high return on their investment portfolio
show that they can see the potential of startups in the early stages and help them grow
into more profitable businesses.

Investing in startups is a risky and complex assessment that requires understanding
the product and market it tries to take on and the people and organizations that drive
it. Investors need to have an overview of the relationships between these aspects that
help support the analysis of a startup’s potential.

Solution: A Startup Investment Graph
Data to support the assessment of investments is mainly unstructured because it is
collected from different sources. One example of such a source is the Crunchbase
dataset. This dataset contains information on investment rounds, founders, compa‐
nies, investors, and investment portfolios. However, the dataset is in raw format,
meaning that the data is not structured to answer the questions we have on the
entities related to startups for investment purposes. Data about startups and the
entities contributing to the current state is hidden from us unless we query for the
data explicitly. With graphs, we can form a schema centered around a target startup
that we want to investigate and view the impact of other entities on the startup.

Investing in startups occurs in a series of funding events, as shown in Figure 4-1.
Startups typically want to raise more money from a more extensive mixture of invest‐
ors in every later funding stage. Knowing the timing and sequence of events through‐
out these funding stages is essential to validate successful investment interactions.
Graphs can provide a complete overview of an investment network by searching for
multihop chains of events. By doing this, we can connect angel investors and venture

80 | Chapter 4: Studying Startup Investments

https://techcrunch.com/2021/01/19/in-2020-vcs-invested-428m-into-us-based-startups-every-day
https://smallbiztrends.com/2022/12/startup-statistics.html

capitalists through different funding stages and expose their investment portfolios’
success rates over time.

Figure 4-1. Startup funding stages and types of investors per stage

Traditional relational database queries provide us with a snapshot of an event and
the state of each entity at a single point in time. However, when assessing investment
portfolios, we need to understand the relationships between investors and the compa‐
nies they have invested in and how these relationships have evolved. Graphs solve this
by showing the investment portfolio as a series of events using multihop queries. We
can also use multiple hops to perform complex searches and filtering, such as “find
companies that have board members who are from a top-ranked VC firm and who
previously served on the board of startups that had successful exits.”

For example, we want to know what startups colleagues of a successful investor
are investing in now. This insight allows us to utilize successful investors’ expertise
and network based on their past investments. A multihop query can realize this
by first selecting one or more successful investors. We might already have some in
mind, or we could find them by counting the number of successful investors per
investor; that would be one hop. The second hop selects all financial organizations
where the investors work. The third hop query selects colleagues at those financial
organizations, and the fourth hop selects other funding events where those colleagues
participate.

Implementing a Startup Investment Graph and Queries
TigerGraph Cloud offers a starter kit for the startup investment analysis use case.
In the remainder of this chapter, we will describe how we model startups and their
funding with a graph schema. Then we’ll look at four different graph analyses that
could help an investor select promising startups.

The Crunchbase Starter Kit
Use the TigerGraph Cloud account that you created in Chapter 3 to deploy a new use
case and select “Enterprise Knowledge Graph (Crunchbase).” Once this starter kit is

Implementing a Startup Investment Graph and Queries | 81

installed, follow the steps in the section “Load data and install queries for a starter kit”
on page 50 in Chapter 3.

Graph Schema
The starter kit includes actual data from investments in startups in 2013 collected
by Crunchbase. It has more than 575K vertices and over 664K edges, with 10 vertex
types and 24 edge types. Figure 4-2 shows the graph schema of this starter kit. We can
immediately see that Company is a vertex type that acts as a hub because it connects to
many other vertex types.

Figure 4-2. Graph schema for Enterprise Knowledge Graph (Crunchbase) (see a larger
version of this figure at https://oreil.ly/gpam0402)

Furthermore, there are two types of self edges. A Company can acquire another
Company, and a Company can also invest in another Company. A Person type vertex,
on the other hand, does not have self edges, which means that a social connection

82 | Chapter 4: Studying Startup Investments

https://oreil.ly/gpam0402

always goes through another vertex type such as University, Financial_Org,
Funding_Rounds, or Company. For example, if a Person works for a company, this
type of relationship is indicated with the edge type work_for_company.

In Table 4-1, we describe the 10 vertex types in the starter kit. From the description,
we can see that Company vertices have potential relationships with many other vertex
types. Some of them even have multiple relationship types that connect to Company.
For example, a Person can invest in a Company, but it can also work for a Company.

Table 4-1. Vertex types in the Crunchbase Starter Kit

Vertex type Description
Company A company
Funding_Rounds An investment event where a Company invests or receives funds
Person A natural person who works for a Company or invests in a Company

University A university institution
Financial_Org A financial institution that invests in a Company

Funds A financial investment
Office A physical office of a Company

IPO An initial public offering of a Company

Product A product or service of a Company

Milestone A milestone that a Company has accomplished

Queries and Analytics
Let’s look at the queries in the Enterprise Knowledge Graph (Crunchbase) Starter Kit.
There are four queries in this starter kit. Each query is designed to answer questions
that a potential investor or employer might ask.

Key role discovery
This query finds all the persons with a key role at a given Company and its parent
companies. A key role for a Person is defined as serving as a founder, CEO, CTO,
director, or executive for the Company where they work.

Investor successful exits
Given a certain investor, this query finds the startups that had a successful exit
within a certain number of years after the investor invested. A successful exit
is when a company has an IPO or is acquired by another company. The visual
output of the query is the subgraph of the given investor with all its relationships
with IPO and acquiring Company elements. An investor could be any element of
type Person, Financial_Org, or Company.

Implementing a Startup Investment Graph and Queries | 83

3 Accumulators were described in Chapter 3.

Top startups based on board
This query ranks startups based on the number of times that a current board
member working for a top investment firm (Financial_Org) was also a board
member of a previous startup that had a successful exit. Investment firms are
ranked by the amount of funds they invested in the past N years. Board members
are scored according to their number of successful exits. In addition, the query
filters output startups that are beyond a certain funding-round stage.

Top startups based on leader
This query ranks startups based on the number of times one of its founders
previously worked at another Company, during an early stage of that company,
which then went on to have a successful exit. The search is filtered to look only at
a given industry sector.

Key role discovery

The key_role_discovery query has two arguments. The first argument, company_
name, is our target Company for which we want to find the persons who played key
roles either there or at a parent company. The second argument, k, determines how
many hops from our starting company_name we will search for parent companies.
This query fits very naturally with a graph model because of the k hops parameter.
Figure 4-3 shows part of the graph traversal for two hops. Starting from company
Com A, we could find connections to a parent company Com B and two key persons,
Ben and Adam. We then look to see if Com B has key persons or has another parent
company.

We’ll now walk you through the GSQL implementation. In your starter kit, look for
the query called key_role_discovery. Select it so you can see the code.

First, we declare some accumulators3 in which to gather our output objects, @@out
put_vertices and @@output_edges. We also declare visited to mark vertices that
the query has encountered already, to avoid double-counting or searching in circles.
In this dataset, if a time variable does not have a genuine value, it is set to code 0,
which translates to January 1, 1970. We declare TNULL as a more descriptive name for
this situation:

 OrAccum @visited;
 SetAccum<VERTEX> @@output_vertices;
 SetAccum<EDGE> @@output_edges;
 DATETIME TNULL = to_datetime("1970-01-01 00:00:00");

84 | Chapter 4: Studying Startup Investments

Figure 4-3. Graph traversal pattern to find employees who have a key role at a company
and its parent companies

Next, we select all the company elements whose name attribute matches the input
parameter company_name. The functions lower(trim()) remove any leading or
trailing blank spaces and convert all the letters to lowercase so that differences in
capitalization won’t matter. Each vertex whose name matches is added to the @@out
put_vertices set and is also marked as @visited:

 Linked_companies (ANY) = SELECT tgt
 FROM Company:tgt
 WHERE lower(trim(tgt.name)) == lower(trim(company_name))
 ACCUM @@output_vertices += tgt
 POST-ACCUM tgt.@visited = TRUE;

Now, we start a WHILE loop to look for key persons and parent companies up to
k levels deep. At each iteration, we select all Company elements that have an inves
ted_by_company, acquired_by, or work_for_company edge to a Company or Person.
This is a good example of the importance of selecting descriptive names for your
vertices and edges:

 WHILE TRUE LIMIT k DO
 Linked_companies = SELECT tgt
 FROM Linked_companies:s

Implementing a Startup Investment Graph and Queries | 85

 - ((invested_by_company> | acquired_by> | work_for_company):e)
 - (Company | Person):tgt

There is more to this SELECT block. Its WHERE clause performs additional filter‐
ing of the selected companies and persons. First, to make sure we are traversing
company-to-person edges in the correct direction, we require that the source vertex
(using the alias s) is a company. We also require that we haven’t visited the target ver‐
tex before (NOT tgt.@visited). Then, if the edge type is work_for_company, the job
title must contain “founder,” “CEO,” “CTO,” “[b]oard [of] directors,” or “[e]xecutive”:

 WHERE s.type == "Company" AND tgt.@visited == FALSE AND
 (e.type == "work_for_company" AND
 (e.title LIKE "%founder%" OR e.title LIKE "%Founder%" OR
 e.title LIKE "%CEO%" OR e.title LIKE "% ceo%" OR
 e.title LIKE "%CTO%" OR e.title LIKE "% cto%" OR
 ((e.title LIKE "%oard%irectors%" OR e.title LIKE "%xecutive%")
 AND datetime_diff(e.end_at, TNULL) == 0))
) OR
 e.type != "work_for_company"

We then add the selected vertices and edges to our accumulators @@output_vertices
and @@output_edges, and we mark the vertices as visited.

Finally, we display the selected companies and persons with their interconnecting
edges, both graphically and as JSON data. The line Results = {@@output_verti
ces} creates a vertex set from a SetAccum<VERTEX>. If we printed @@output_vertex
directly, we would see only the vertices’ IDs. Printing a vertex set like Results will
display all of the vertices’ properties:

IF @@output_vertices.size() != 0 THEN
 Results = {@@output_vertices}; // conversion to output more that just id
 PRINT Results;
 PRINT @@output_edges;
ELSE
 PRINT "No parties with key relations to the company found within ", k,
 " steps" AS msg;

GSQL: Printing Vertices

For efficiency, accumulators containing vertices store only their
IDs. To print vertex properties, copy the accumulator into a regular
vertex set and print the vertex set.

In Figure 4-4, we show the output when company_name = LuckyCal and k = 3. While
the name of the company in the center is missing, we can see that it is Facebook,
based on the list of founders, including Mark Zuckerberg.

86 | Chapter 4: Studying Startup Investments

Figure 4-4. Key role discovery when company_name = LuckyCal and k = 3 (see a larger
version of this figure at https://oreil.ly/gpam0404)

Investor successful exits

The investor_successful_exits query finds the achievement of a given investor,
where achievement is measured by the number of investments that lead to IPOs
and acquisitions. It takes three arguments. investor_name is the name of our target
investor of whom we want to know the achievements, and investor_type is the
type of investor, which could be Company, Person, or Financial_Org. We use year to
test if an exit occurred soon enough after the funding. We can answer this query by
using the following graph traversal pattern as illustrated in Figure 4-5. Start from the
selected investor vertex (investor_name):

1. Hop to the funding rounds the investor participated in.1.
2. Hop to the companies funded by these rounds.2.

Implementing a Startup Investment Graph and Queries | 87

https://oreil.ly/gpam0404

3. Hop to the exit events (acquired_by or company_ipo edges).3.

Figure 4-5. Graph traversal pattern to find investors with successful exits (see a larger
version of this figure at https://oreil.ly/gpam0405)

We’ll walk you through key parts of the GSQL code for the investor_success
ful_exits query.

We start by declaring several variables. We want to show the paths from investor
to successful exits. As we traverse through the graph, @parent_vertex_set and
@parent_edge_set act like breadcrumbs. At each newly visited vertex, we use them
to record how we got there. After we reach the end, we use these accumulators to
find our way back. During the backtrack, we gather all the vertices and edges on these
paths into the global accumulators @@result_vertex_set and @@result_edge_set:

 SetAccum<VERTEX> @parent_vertex_set;
 SetAccum<EDGE> @parent_edge_set;
 SetAccum<VERTEX> @@result_vertex_set;
 SetAccum<EDGE> @@result_edge_set;

Next we create the Start set of vertices, using a CASE statement and the
investor_type parameter to select the type of investors indicated by the user:

 Start (ANY) = {};
 CASE lower(trim(investor_type))
 WHEN "person" THEN Start = {Person.*};
 WHEN "company" THEN Start = {Company.*};
 WHEN "financialorg" THEN Start = {Financial_Org.*};
 END;

88 | Chapter 4: Studying Startup Investments

https://oreil.ly/gpam0405

We complete the preliminaries by finding the individual investor who has
investor_name. If the investor is a Person, we check the attribute called fullname;
otherwise, we check the attribute called name:

 Investor (ANY) = SELECT inv
 FROM Start:inv
 WHERE (inv.type == "Person"
 AND lower(trim(inv.fullname)) == lower(trim(investor_name))
) OR lower(trim(inv.name)) == lower(trim(investor_name));

Now we begin our graph hops. First we select all the Funding_Rounds linked to the
investor. At each selected Funding_Rounds vertex, we store the identity of the vertex
and edge traversed to arrive there. The target vertices of this hop are stored in a
variable called Funding_rounds:

 Funding_rounds = SELECT tgt
 FROM Investor:s - ((investment_from_company | investment_from_person |
 investment_from_financialORG):e) - Funding_Rounds:tgt
 ACCUM
 tgt.@parent_vertex_set += s,
 tgt.@parent_edge_set += e;

Now we take another hop from the selected funding rounds to the companies they
funded. An investor can invest in a company at more than one funding round. For
example, in Figure 4-6, we see that Ted Leonsis invested in Revolution Money in
both rounds B and C. An investor’s success should be judged from the time of their
first investment. Each Funding_Rounds vertex sends its funded_at parameter value
to a MinAccum @min_invested_time, which remembers the minimum value that it is
given:

 Invested_companies = SELECT tgt
 FROM Funding_rounds:s - ((company_funding_rounds):e) - Company:tgt
 ACCUM
 tgt.@parent_vertex_set += s,
 tgt.@parent_edge_set += e,
 tgt.@min_invested_time += s.funded_at;

Finally, for each company that received investment funding, we look to see if it had
a successful exit within the required time window. A company_ipo or acquired_by
edge indicates an exit. If it was an IPO, we check that the IPO date (the public_at
attribute) is later than the investment date but not more than the value of years
later. An analogous check is performed on the acquired_at attribute if it was an
acquisition event:

 IPO_acquired_companies = SELECT tgt
 FROM Invested_companies:s - ((company_ipo | acquired_by>):e) -:tgt
 ACCUM
 tgt.@parent_vertex_set += s,
 tgt.@parent_edge_set += e,
 // See if IPO occurred within `years` after Investor's investment

Implementing a Startup Investment Graph and Queries | 89

 IF (e.type == "company_ipo"
 AND datetime_diff(tgt.public_at, s.@min_invested_time) > 0
 AND datetime_diff(
 tgt.public_at, s.@min_invested_time) <= years * SECS_PER_YR)
 // See if Acquisition occurred within `years` of investment
 OR (e.type == "acquired_by"
 AND datetime_diff(e.acquired_at, s.@min_invested_time) > 0
 AND datetime_diff(
 e.acquired_at, s.@min_invested_time) <= years * SECS_PER_YR)
 THEN @@result_vertex_set += tgt
 END;

Figure 4-6. Investor successful exits when investor_name = Ted Leonsis and years = 3
(see a larger version of this figure at https://oreil.ly/gpam0406)

If we only wanted to know how many successful exits our investor had, or the com‐
pany details of those exits, we would be done. However, it’s interesting to graphically
show the paths from investor → funding → company → exit, as in Figure 4-6. To
gather that information, we traverse from the exit vertices backward to the investor,
using the breadcrumbs (@parent_vertex_set and @parent_edge_set) that we set
previously:

 Children = {@@result_vertex_set};
 PRINT Children.size() as Num_Successful_Exits;
 WHILE(Children.size() > 0) DO
 Start = SELECT s
 FROM Children:s

90 | Chapter 4: Studying Startup Investments

https://oreil.ly/gpam0406

 ACCUM
 @@parents += s.@parent_vertex_set,
 @@result_edge_set += s.@parent_edge_set;

 @@result_vertex_set += @@parents;
 Children = {@@parents};
 @@parents.clear();

Top startups based on board

The top_startups_based_on_board query adds some complexity by adding in two
forms of ranking: top-performing investment companies and top-performing leaders
at those investment companies. It starts by identifying the Financial_Org entities
that have invested the most money in recent years. Then, we rank Persons at those
organizations according to the number of times they were on the board of a startup
Company and guided it to a successful exit. Then, we display any pre-exit Companies
that currently have one of these successful executives as a board member.

The top_startups_based_on_board query has four input parameters:

k_orgs

The number of top financial institutions we want to include in our selection
scope

num_persons

The number of top board members to select

max_funding_round

Filters the final list of promising startups to exclude those that have received
investment funding at a later stage than max_funding_round

past_n_years

Sets the time window for money invested by Financial_Org

We can implement this query according to the following steps, most of which corre‐
spond to a graph hop; these steps are illustrated in Figure 4-7:

1. Compute how much Funding_Rounds investment each Financial_Org made in1.
the past N years [Hop 1].

2. Rank the Financial_Org by the investment amount and take the top k_orgs.2.
3. Find Persons who work for a top k Financial_Org (from step 2) [Hop 2].3.
4. Find companies at which those Persons (from step 3) served as board members4.

[Hop 3].
5. Rank those Persons (from step 3) by the number of times they were on the board5.

of a Company (from step 4) before its successful exit [Hop 4].

Implementing a Startup Investment Graph and Queries | 91

6. Find pre-exit Company vertices that have a top board member Person (from step6.
5). Filter these companies by the funding round cutoff [Hop 5].

This query declares several accumulators and other variables to assist with this
computation. There are also two interesting data preparation steps. One stores some
currency exchange rates in a lookup table. Another makes a list of all the funding
round codes @@allowed_funding_rounds up to our max_cutoff_round.

Figure 4-7. Graph traversal pattern to find promising startups based on successful board
members from top financial organizations

Our first graph hop is also a data preparation step. Our Crunchbase graph schema
stores the IPO or acquisition date of a company on an edge. Copy that data so that it
is also available with the companies themselves:

 Comp = SELECT c
 FROM (Company):c - ((company_ipo|acquired_by>):e) - (IPO|Company):x
 ACCUM

92 | Chapter 4: Studying Startup Investments

 CASE WHEN
 e.type == "company_ipo" AND datetime_diff(x.public_at, T0) != 0
 THEN
 c.@t_exit += x.public_at
 END,
 CASE WHEN
 e.type == "acquired_by" AND datetime_diff(e.acquired_at,T0) != 0
 THEN
 c.@t_exit += e.acquired_at
 END;

In the next hop, we connect Financial_Org vertices with their investment Funds
in order to tally the investments of the past_n_years and then take the top k
organizations. The WHERE clause filters for the desired time range. To take the top k,
GSQL offers ORDER BY and LIMIT clauses, just as in SQL:

 Top_orgs = SELECT org
 FROM (Financial_Org):org - (financial_funds:e) - Funds:f
 WHERE datetime_diff(END_2013, f.funded_at) <= past_n_years*SECS_PER_YR
 ACCUM org.@amount +=
 (f.raised_amount / @@currency2USD.get(f.raised_currency_code)),
 f.@visited = TRUE
 ORDER BY org.@amount DESC
 LIMIT k_orgs;

Advanced GSQL users may sometimes choose to use HeapAccum instead of ORDER
BY/LIMIT because sorting a small heap takes less computer memory than the global
sort that ORDER BY performs.

Next, we select all employees (Person who work_for_fOrg) at these top financial
organizations (the Top_org vertex set from the previous step):

 Persons_at_top_orgs = SELECT p
 FROM Top_orgs:o - (work_for_fOrg:e) - Person:p;

From these Persons_at_top_orgs, we want to select the ones that satisfied the
following criteria for helping to lead a successful exit:

• Their job title included “Board.”•
• The company has had an exit (c.@t_exit.size() != 0).•
• The person has a valid work start date (datetime_diff(w.start_at, T0) != 0).•
• The company’s exit occurred after the board member joined.•

The following code performs that selection:

 Top_board_members = SELECT p
 FROM Persons_at_top_orgs:p - (work_for_company:w) - Company:c
 WHERE (w.title LIKE "%Board%" OR w.title LIKE "%board%")
 AND c.@t_exit.size() != 0 AND datetime_diff(w.start_at, T0) != 0
 AND datetime_diff(c.@t_exit.get(0), w.start_at) > 0

Implementing a Startup Investment Graph and Queries | 93

4 We are analyzing Crunchbase’s 2013 data. A few of these startups did succeed; others did not.

After finding these successful startup board members, we build a list of these success‐
ful startup companies (@@comp_set). We also have each such Company record its key
board member (c@board_set), and we tally the successful exits of each key person
(p.@amount += 1). Finally, we take the most prolific board members (ORDER BY and
LIMIT):

 ACCUM
 @@comp_set += c,
 c.@board_set += p,
 p.@amount += 1
 ORDER BY p.@amount DESC
 LIMIT num_persons;

Then we find all pre-exit Company entities that have a top_board_member:

 Top_startups = SELECT c
 FROM Top_board_members:s - (work_for_company:w) - Company:c
 WHERE (w.title LIKE "%Board%" OR w.title LIKE "%board%")
 AND w.start_at != T0
 AND c.status == "operating" AND c.@t_exit.size() == 0;

Finally, we include only those pre-exit companies whose Funding_Rounds have been
early enough to satisfy the max_cutoff_round limit:

 Top_early_startups = SELECT r
 FROM Top_startups:s - (company_funding_rounds:e) - Funding_Rounds:r
 ACCUM
 s.@visited += TRUE,
 IF @allowed_funding_rounds.contains(r.funding_round_code) THEN
 r.@visited = TRUE
 ELSE
 s.@early += FALSE
 END;

The remainder of the query is used to trace back from the top board members to
display the companies they worked for and their successful exits.

Figure 4-8 shows the results when we set k_orgs = 10, num_persons = 2, max_fund
ing_round = b, and past_n_years = 10. The two key board members are Jim Goetz
and Jim Breyer, who both work for Accel Partners. Goetz has had four successful
exits, while Breyer has had three. The recommended startups are companies linked
to Goetz or Breyer that don’t yet have an exit: Nimble Storage, Ruckus Wireless,
HubSpot, Booyah, and Etsy.4

94 | Chapter 4: Studying Startup Investments

Figure 4-8. Graph output for top startups based on board members (see a larger version
of this figure at https://oreil.ly/gpam0408)

Top startups based on leader
Our last query in this starter kit is similar to the previous one, except that rather than
looking for top board members, we are looking for founders. This query takes three
arguments. max_funding_round is the funding round cutoff, meaning that we only
select startups whose investment rounds have been no later than max_funding_round.
Argument return_size is the number of top startups we want to retrieve from our
query, and sector is the industry sector we want to filter out the result.

Figure 4-9 illustrates how we construct this query as a series of graph hops:

1. Find all companies that have IPOed or been acquired [Hop 1].1.
2. Find employees who contributed to the companies in step 1 [Hop 2].2.
3. Find startups whose founder also was a key employee from step 2 [Hop 3]. Filter3.

the startups based on the cutoff round and sector.
4. Find companies whose founders have the most successful connections.4.

Implementing a Startup Investment Graph and Queries | 95

https://oreil.ly/gpam0408

Figure 4-9. Graph traversal pattern to find promising startups based on successful
founders

This query introduces some data structures that we haven’t seen before: a TUPIL and a
HeapAccum. A GSQL tuple is a user-defined data type composed of a set of basic exist‐
ing types. A Company_Score tuple consists of a Company vertex followed by an integer.
A HeapAccum manages a sorted list of tuples up to a user-specified maximum number
of items. Our HeapAccum @@top_companies_heap holds Company_Score tuples sorted
by their score values. The heap can contain up to return_size companies:

 TYPEDEF TUPLE<VERTEX<Company> company, INT score> Company_Score;
 HeapAccum<Score_Results>(return_size, score DESC) @@top_companies_heap;

We also define two nested MapAccums. A map is like a lookup table. Looking at the
structural definition of @@person_company_leave_date_map, this means that for a
given person, we record when that person left a given company. For @@person_com
pany_employment_map, we record the employment relationship between a Person and
a Company:

 // Declare map to store when an employee left which company
 MapAccum<VERTEX<Person>,
 MapAccum<VERTEX<Company>, DATETIME>> @@person_company_leave_date_map;

96 | Chapter 4: Studying Startup Investments

 MapAccum<VERTEX<person>,
 MapAccum<VERTEX<Company>, EDGE>> @@person_company_employment_map;

Now we find all the companies with an IPO or that have been acquired by another
company. For clearer code, one code block finds IPO companies, another focuses on
acquisitions, and then we merge the two sets of companies. For the IPOs, we traverse
from IPO vertices to Company vertices. We check that the IPO has a valid public_at
attribute. Once selected, we tag each Company with the path back to the IPO vertex and
with the public_at date. We tag the company as no longer in the startup phase:

 IPO_companies = SELECT c
 FROM IPO:i - (company_ipo:e) - Company:c
 //Filter out companies with null acquisition time (not yet acquired)
 WHERE datetime_diff(i.public_at, TNULL) != 0
 ACCUM
 c.@parent_vertex_set += i,
 c.@parent_edge_set += e,
 c.@min_public_date = i.public_at,
 c.@is_still_startup += FALSE;

A similar code block finds the acquired_companies. The edge type is different
(acquire instead of company_ipo), and the effective data attribute is different
(acquired_at instead of public_at).

We then join the output sets from these two blocks:

 IPO_acquired_companies = IPO_companies UNION Acquired_companies;

Next we select all the persons who have worked for a successfully exited company
before the exit event. For each such person, we store their relevant information into
the nested maps that we described earlier. Notice the -> operator used to specify a
map’s key -> value pair:

Startup_employees = SELECT p
 FROM IPO_acquired_companies:c - (work_for_company:e) - Person:p
 WHERE datetime_diff(e.start_at, TNULL) != 0
 AND datetime_diff(e.end_at, TNULL) != 0
 AND datetime_diff(e.start_at, c.@min_public_date) < 0
 ACCUM
 @@person_company_employment_map += (p -> (c -> e)),
 @@person_company_leave_date_map += (p -> (c -> e.end_at));

Now we find the startups where these successful-exit employees are currently a
founder, filtered by industry. The checks for the startup status and founder status are
performed in the WHERE clause:

 New_startups = SELECT c
 FROM startup_employees :p - (work_for_company :e) - Company :c
 WHERE c.@is_still_startup
 AND c.@early_startup
 AND c.status != "acquired"
 AND c.status != "ipo"

Implementing a Startup Investment Graph and Queries | 97

 AND e.title LIKE "%ounder%"
 AND lower(trim(c.category_code)) == lower(trim(sector))
 AND datetime_diff(e.start_at, TNULL) != 0
 AND datetime_diff(e.end_at, TNULL) != 0

After selecting these startups, we tally the founders’ past successes:

 ACCUM
 // Tally the founder:past-success relationships per new company
 FOREACH (past_company, leave_date)
 IN @@person_company_leave_date_map.get(p) DO
 IF datetime_diff(e.start_at, leave_date) > 0 THEN
 p.@parent_edge_set +=
 @@person_company_employment_map.get(p).get(past_company),
 p.@company_list += past_company,
 c.@parent_vertex_set += p,
 c.@parent_edge_set += e,
 c.@sum_ipo_acquire += 1
 END
 END
 HAVING c.@sum_ipo_acquire > 0;

Select companies where the founders have the most relationships with successfully
exited companies. We use the HeapAccum we described previously to rank the compa‐
nies based on the tally of successful exits of its founder(s):

 Top_companies = SELECT c
 FROM Startups_from_employees:c
 ACCUM @@top_score_results_heap += Score_Results(c, c.@sum_ipo_acquire);
 PRINT @@top_score_results_heap;

 FOREACH item IN @@top_score_results_heap DO
 @@output_vertex_set += item.company;
 END;

Figure 4-10 shows the results when the input arguments are max_funding_round = c,
return_size = 5, and sector = software. The five selected startups are listed on the
right. Looking at the second company from the top, we read from right to left: Packet
Trap Networks is selected because founder Steve Goodman was a Founder/CEO of
Lasso Logic, which was acquired by SonicWALL.

98 | Chapter 4: Studying Startup Investments

Figure 4-10. Graph output of top startups based on leader (see a larger version of this
figure at https://oreil.ly/gpam0410)

Chapter Summary
In this chapter, we have seen how we can use graph analytics to answer important
questions and gain valuable insight about startup investments. Looking at the graph
schema for Crunchbase data, we’ve seen that such data is highly interconnected. In
the case of investment advice, we often look to past performance as an indicator of
possible future results. So we look for one pattern (success in the past) and see if there
is potential for a repeat of that pattern. This type of pattern search or similarity search
is typical of graph analytics.

We have discussed four queries in this chapter to identify those patterns that can help
us investigate investment opportunities. The first query identifies all persons with
key roles within a company. The second query identifies successful startup exits from
an investor. The third query shows us a ranking of startups with successful board

Chapter Summary | 99

https://oreil.ly/gpam0410

members. The fourth query shows us a ranking of startups with successful founders.
Each query demonstrated how multihops are utilized to benefit our analyses.

This chapter demonstrated several GSQL language features and techniques, such as:

• Using a WHILE loop to search multiple levels deep•
• Tagging vertices with a Boolean accumulator to mark that it has been visited•
• During multistep traversal, tagging vertices with a parent_vertex and a par•
ent_edge to serve as breadcrumbs, so we can recover our paths later

• Using the ORDER BY and LIMIT clauses in a SELECT block to find the top-ranked•
vertices, similar to selecting the top-ranked records in SQL

100 | Chapter 4: Studying Startup Investments

1 “What Is Money Laundering?” fatf-gafi, accessed May 22, 2023, https://www.fatf-gafi.org/en/pages/frequently-
asked-questions.html#tabs-36503a8663-item-6ff811783c-tab.

CHAPTER 5

Detecting Fraud and
Money Laundering Patterns

In this chapter, we take on the serious problem of fraud and money laundering. Fraud
is typically conducted by one or more parties as a multistep process. Sometimes,
the only way to distinguish fraud or money laundering from legitimate activity is
to detect a characteristic or unusual pattern of activity. Modeling the activity and
relationships with a graph enables us to detect suspicious activity by searching for
those patterns along with checking for their frequency.

After completing this chapter, you should be able to:

• Describe coordinated activity among multiple parties in terms of a graph pattern•
• Use a multihop or iterated single-hop graph traversal to perform a deep search•
• Describe bidirectional search and its advantages•
• Understand the use of timestamps to find a time sequence•

Goal: Detect Financial Crimes
Financial institutions are responsible for averting criminal money flows through the
economic infrastructure. According to The Financial Action Task Force (FATF), illicit
funds amount to 3.6% of global GDP.1 A well-known criminal activity is money laun‐
dering, or disguising the origin of money earned through illicit means. According to

101

https://www.fatf-gafi.org/en/pages/frequently-asked-questions.html#tabs-36503a8663-item-6ff811783c-tab
https://www.fatf-gafi.org/en/pages/frequently-asked-questions.html#tabs-36503a8663-item-6ff811783c-tab

the FATF, 2.7% of global GDP is laundered per year. Banks are legally obligated to
investigate their clients’ payment behavior and report any suspicious activities.

Other types of financial fraud include identity theft, where someone uses another
person’s accounts without permission, and Ponzi schemes, which are characterized by
money flowing from newer investors to earlier investors without actually going to an
external venture.

Banks have built a wide range of applications and procedures into their daily opera‐
tions to identify and detect financial crimes. Broadly speaking, these techniques can
fall into two areas.

The first area of investigation, Know Your Customer (KYC), looks into the client
profile. Similar to what we’ve seen in Chapter 3 with the Customer 360 use case,
analysts need to conduct client due diligence. This client risk assessment can happen
at multiple stages of the client lifecycle, such as during new client takeover (NCTO)
or during a periodic review.

The second area of investigation, transaction monitoring, mainly focuses on identi‐
fying criminal behavior through bank transactions. Here, analysts try to identify
unusual payment patterns between senders and beneficiaries. Although these two
investigation areas often overlap from a bank operational perspective and on a risk
management level, we will mainly focus on transaction monitoring in this chapter.

Transaction monitoring involves thorough investigations into entities that show sus‐
picious payment behavior. Analysts start these investigations from entities flagged as
suspicious and move from there to explore high-risk interactions. Thus, analysts do
not know the complete picture of how the money flows and lack visibility on where
the flagged entity is in the entire money trail. To gain this visibility, they have to
query step-by-step the next payment interaction to build up a complete picture of the
payment network. Therefore, analysts need an approach that helps them retrieve a set
of consecutive payments and the parties involved in those payments.

Solution: Modeling Financial Crimes as Network Patterns
Traditional transaction monitoring relies on rule-based systems where client behavior
is checked against fixed risk indicators. Such a risk indicator could be when, for
example, clients received $15,000 cash in their account and immediately sent that
money to several third-party accounts. This could be normal income and expense
activity, or it could be part of a money laundering technique called layering. It
indicates a suspicious activity because it revolves around a large amount of cash, and
that money moves to several third parties, making it harder to trace its origin.

There are two major problems with relying on rule-based risk indicators. First, the
analyst is still required to do an in-depth follow-up investigation on flagged clients,

102 | Chapter 5: Detecting Fraud and Money Laundering Patterns

which involves querying consecutive payments between different clients. Second,
rule-based risk indicators have been limited in their sophistication due to the chal‐
lenge of extracting deep patterns from tabular data.

When modeling this problem as a network, it becomes easier to identify high-risk
patterns because we can visualize the money flow directly from the graph data
model. Doing so shows us how the money moves in a network and which parties
are involved in those payment interactions. This graph approach solves the first
problem because the graph pattern search will discover the consecutive payments for
the analyst. It also solves the second problem because the network will expose all
the relationships between involved parties, including those that the analysts do not
explicitly query.

Later in this book, we will see how graph machine learning can do an even better job
of detecting financial crime patterns.

Implementing Financial Crime Pattern Searches
TigerGraph provides a starter kit for fraud and money laundering detection. Follow
the installation steps from Chapter 3 to install the starter kit. After the installation, we
will use the starter kit to design our money laundering network and explore how we
can detect suspicious payment interactions on this network.

The Fraud and Money Laundering Detection Starter Kit
Using TigerGraph Cloud, deploy a new cloud cluster and select “Fraud and Money
Laundering Detection” as the use case. Once this starter kit is installed, follow the
steps in the section “Load data and install queries for a starter kit” on page 50 in
Chapter 3.

Graph Schema
The Fraud and Money Laundering Detection Starter Kit contains over 4.3M verti‐
ces and 7M edges, with a schema that has four vertex types and five edge types.
Figure 5-1 shows the graph schema of this starter kit.

Implementing Financial Crime Pattern Searches | 103

Figure 5-1. Graph schema for the Fraud and Money Laundering Detection Starter Kit
(see a larger version of this figure at https://oreil.ly/gpam0501)

In Table 5-1 we describe the four vertex types. A User has a central role in a payment
interaction, where it can receive and send payments. Transaction is the payment
itself. Device_Token is a unique ID number that refers to the device used for the
payment, and Payment_Instrument refers to the type of instrument used for the
payment.

Table 5-1. Vertex types in the Fraud and Money Laundering Detection Starter Kit

Vertex type Description
User A person who is involved in a payment
Transaction A payment
Device_Token A unique ID number used to carry out the Transaction

Payment_Instrument An instrument to execute the payment

There are two types of relationships between User and Transaction. A User can
receive a transaction, denoted with User_Receive_Transaction, or a User can send
a transaction, marked with User_Transfer_Transaction. A User can refer another
User, which is indicated by User_Refer_User. The edge type User_to_Payment links
a User to a Payment_Instrument (check, cash, warrant, etc.) used to carry out a trans‐
action. Finally, the User_to_Device edge type connects a User to the Device_Token
used when making an electronic payment.

Queries and Analytics
The queries included in this starter kit showcase how graphs can help analysts detect
high-risk payment behavior to combat fraud and money laundering. We’ll first give a
high-level description of the pattern that each query looks for and how this pertains

104 | Chapter 5: Detecting Fraud and Money Laundering Patterns

https://oreil.ly/gpam0501

to transaction fraud or money laundering. We then go into depth for three of them to
give you a better idea of how they are implemented.

Circle detection
This query detects when money moves in a circular flow. It selects the Transac
tion elements that form a time sequence from an input User and then return to
that User. If the amount of money that comes back is close to the amount that
went out, then this may indicate money laundering.

Invited user behavior
This query looks for suspicious patterns of User_Refer_User behavior, which
may indicate that a User is collaborating with other parties to collect referral
bonuses. It looks at the number of referrals within two hops of a source User and
at the number of transactions these users have conducted.

Multitransaction
This query showcases the payments between two networks of User elements.
Starting with an input Transaction, the first group is a network of User elements
related to the sending party. The second group is a network of User elements
from the receiving party. The query visualizes the two networks and any money
flows between them.

Repeated user
This query discovers if there is a connection among User elements that send
money to the same receiver. It starts with the input User, who receives money,
and selects all other User elements that send the money to that input User.
Then it checks if there is a path between those senders using Device_Token,
Payment_Instrument, and User.

Same receiver sender
This query detects if a User uses a fake account to send money to itself. Given
an input Transaction, this query returns true if the receiver and sender can be
linked to each other by Device_Token and Payment_Instrument.

Transferred amount
This query looks within a given time window for the total amount of funds
transferred out from the Users who are connected within a few hops of a source
User. While not directly suspicious, a high volume of funds could help to build
the case for anti-money-laundering layering.

We now take a closer look at the invited user behavior, multitransaction, and circle
detection queries.

Implementing Financial Crime Pattern Searches | 105

Invited user behavior

This pattern assumes that a User can earn tiered referral bonuses for referring
many new User to an electronic payment service. This query contains a two-hop
traversal implementation, as illustrated in Figure 5-2. We start our traversal from
a given input_user. The first hop selects all the User elements that are invited by
this input_user. Then, with the second hop, we collect all the User elements that
the first-order invitees invite. We then aggregate the transaction amount of those
invitees. The input_user is a fraudulent User if the amount of money directly being
transferred is high while the aggregated money from the second-order invitees is low
or zero. The intuition behind this is that input_user has many fake referrals that fuel
itself with referral bonuses so that it can send a large number of transactions.

Figure 5-2. Graph traversal pattern to detect fraudulent users that conduct activities to
earn referral bonuses

First we declare some accumulator variables to store our aggregated data:

 SumAccum<INT> @@num_invited_persons;
 SumAccum<FLOAT> @@total_amount_sent;
 SetAccum<EDGE> @@edges_to_display;

The SumAccum @@num_invited_persons counts the number of second-hop invitees.
The SumAccum @@total_amount_sent aggregates the amount of all transactions from

106 | Chapter 5: Detecting Fraud and Money Laundering Patterns

the one-hop invitees. The SumAccum @@edges_to_display gathers all the edges
(User_Ref_User) between the input User and a referred User, so that the visualization
system knows to display them.

Then we find the one-hop invitees referred by the source User. We save each edge
between the Start User and an invitee in @@display_edge_set:

 Start = {input_user};

 First_invitees = SELECT t
 FROM Start:s -(User_Refer_User>:e)- :t
 ACCUM @@edges_to_display += e;

In the FROM clause, we don’t need to specify what type of vertices
we are targeting because the edge type (User_Refer_User) only
permits one type of target vertex (User).

Next, we add up the amount of money that these first-order invitees have sent out.
Each Transaction has an attribute called amount:

 Trans = SELECT t
 FROM First_invitees:s -(User_Transfer_Transaction>:e)- :t
 ACCUM
 @@total_amount_sent += t.amount,
 @@edges_to_display += e;

Finally, we get the additional invitees referred by first-hop invitees:

 Second_invitees = SELECT t
 FROM First_invitees:s -(User_Refer_User>:e)- :t
 WHERE t != input_user
 ACCUM @@edges_to_display += e
 POST-ACCUM (t) @@num_invited_persons += 1;

This search looks very much like the first hop, with two additional steps:

1. We check that we are not hopping back to the source User.1.
2. We count the number of second-order invitees.2.

If you run the algorithm with the three suggested input users (115637, 25680893,
22120362), you’ll see they have referred one or a few users, who in turn have referred
zero or a few users. Looking at the JSON results, you’ll see between $0 and $709 in
total payments.

Implementing Financial Crime Pattern Searches | 107

Multitransaction
Analysts believe that criminals often transfer money between two networks. The
following query exposes this intuition. Given any input transaction, the first network
consists of related accounts from the sender of that transaction, and the second
network consists of associated accounts from the receiving party. Then we look for
payment activities among all parties from those two networks. This query assembles
those networks and finds any interactions between them, using the execution flow
illustrated in Figure 5-3.

Figure 5-3. Graph traversal pattern to find transaction networks from sending and
receiving parties

108 | Chapter 5: Detecting Fraud and Money Laundering Patterns

We start with selecting the sender and receiver User elements for a given Transac
tion by traversing User_Transfer_Transaction or User_Receive_Transaction edge
types:

 Sender_receiver (ANY) = SELECT t
 FROM Start:s
 -((<User_Receive_Transaction|<User_Transfer_Transaction):e)- :t

In the FROM clause, we are traversing from a Transaction

(source_transaction) to User elements, which is the reverse
direction of the User_Receive_Transaction and User_Trans

fer_Transaction edges. That is why the direction arrows point
to the left and are on the left side of the edge type names. Alterna‐
tively, if those edges have reverse edge types defined, we could use
their reverse edges instead (and use right-facing arrows.)

We use cases to determine if the User is a receiving or sending party of the Transac
tion. If a User connects to a Transaction via User_Receive_Transaction, we set
@from_receiver to true and add that User to the @@receiver_set. In other cases, the
User is a sending party of the Transaction, so we set @from_sender to true and add
this User to @@sender_set:

 CASE WHEN e.type == "User_Receive_Transaction" THEN
 t.@from_receiver += TRUE,
 @@receiver_set += t
 ELSE
 t.@from_sender += TRUE,
 @@sender_set += t

Now that we know the sender and receiver, we find User elements that belong to the
receiving or sending party. That is, we traverse over User_to_Device or User_to_Pay
ment edges and add User elements to either the @@sender_set or @@receiver_set if
they exist within four hops (WHILE Start.size() > 0 LIMIT MAX_HOPS DO). Since it
takes two hops to make a transaction (sender → transaction → recipient), four hops
equals a chain of two transactions:

 WHILE Sender_receiver.size() > 0 LIMIT MAX_HOPS DO
 Sender_receiver = SELECT t
 FROM Sender_receiver:s -((User_to_Device|User_to_Payment):e)- :t
 WHERE t.@from_receiver == FALSE AND t.@from_sender == FALSE
 ACCUM
 t.@from_receiver += s.@from_receiver,
 t.@from_sender += s.@from_sender,
 @@edges_to_display += e
 POST-ACCUM
 CASE WHEN t.type == "User" AND t.@from_sender == TRUE THEN
 @@sender_set += t

Implementing Financial Crime Pattern Searches | 109

 WHEN t.@from_receiver == TRUE THEN
 @@receiver_set += t

If we end up at a User vertex type and that User is a sending party, we add that User
to @@sender_set. If t.@from_receiver is true, then the User belongs to the receiving
party, and we add that User to @@receiver_set.

After forming the sending and receiving groups, we now look for transactions other
than the source transaction that connect the sender and receiver groups. First, we
find transactions adjacent to the receiver set:

 Receivers = {@@receiver_set};
 Receivers = SELECT t
 FROM Receivers:s
 -((User_Receive_Transaction>|User_Transfer_Transaction>):e)- :t
 ….

Then, we find transactions adjacent to the sender set:

 Senders = {@@sender_set};
 Connecting_transactions = SELECT t
 FROM Senders:
 -((User_Receive_Transaction>|User_Transfer_Transaction>):e)- :t
 WHERE t != input_transaction
 ACCUM
 t.@from_sender += s.@from_sender,
 @@edges_to_display += e
 HAVING t.@from_receiver AND t.@from_sender;

The HAVING clause checks whether a transaction is considered part of the receiving
group and the sending group.

Running the query with one of the suggested transaction IDs (32, 33, or 37), the out‐
put will look like one connected community, because there is at least one transaction
in addition to the input transaction that joins the sender community to the receiver
community. Try a different input ID, and the output will likely look like two separate
communities, joined only by the input transaction.

Circle detection
The essence of money laundering is transfering money between enough parties that
it becomes a challenge to trace its origin. Criminals have several routing schemas to
mask the source of their illicit money. A popular transfer schema is one where the
money is transferred via various intermediaries to return eventually to one of the
senders. In this case, the money traverses in a circular pattern. A circular money flow
is not itself a crime. What makes it criminal is intent and if any of the transitions are
by themselves fraudulent. Characteristics of a circular flow—the size of the loop, the
amount of money transferred, the percentage of money returned to the sender, the

110 | Chapter 5: Detecting Fraud and Money Laundering Patterns

time delays between transactions, and how many of the individual transactions are
out of the ordinary—are also useful indicators.

With graphs, we can detect such circular patterns easier than with traditional
databases because we can hop repeatedly from one transaction to the next until a
transaction arrives at the originator. As we explained in Chapter 2, graph hops are
computationally much cheaper than table joins in a relational database.

In Figure 5-4, we see such a circular money flow. In this example, Adam is the
originator and sends $100 to Ben. Ben sends $60 to Cor, and she sends $40 to Daisy,
who in turn sends $100 back to Adam. We show in this example that Ben, Cor, and
Daisy do not send the same amount of money they have received to the next person
in the chain. Criminals do this to add another layer of noise by making the starting
amount branch out into different chunks across various intermediaries, making it
harder to find out who the originator is and what amount is being laundered.

Figure 5-4. Example circular money flow

The query circle_detection finds all the circular transaction chains starting from a
given User (source_id) that have up to a maximum number of transactions per circle
(max_transactions). Since there are two hops per transaction (sender → transaction
→ recipient), the circles can have up to twice as many hops. To be a valid circle, the
sequence of transactions in a circle must move forward in time. For example, for this
to be a valid circle:

 source_id → txn_A → txn_B → txn_C → source_id

then txn_A.ts < txn_B.ts < txn_C.ts, where ts is the timestamp of a transaction.

Because there are so many possible paths to check, the query’s implementation
employs a couple of performance and filtering techniques. The first one is bidirec‐
tional search, which searches forward from the starting point while simultaneously
searching backward from the ending point. It is faster to conduct two half-length

Implementing Financial Crime Pattern Searches | 111

searches than one full-length search. When the two searches intersect, you have a
complete path.

The second technique filters out paths that can’t meet the forward time travel
requirement:

 Seed = {source_id};
 Seed = SELECT src
 FROM Seed:src - ((User_Transfer_Transaction>|User_Receive_Transaction>):e)
 - Transaction:tgt
 ACCUM
 CASE WHEN
 e.type == "User_Transfer_Transaction"
 THEN
 @@min_src_send_time += tgt.ts
 ELSE
 @@max_src_receive_time += tgt.ts
 END
 …
 HAVING @@max_src_receive_time >= @@min_src_send_time;

Starting from source_id, make one step both forward (User_Transfer_Transac
tion) and backward (User_Receive_Transaction). Find the earliest time of any
transaction sent by source_id (@@min_src_send_time) and the latest time of any
transaction received by source_id (@@max_src_receive_time). Check to make sure
that @@max_src_receive_time >= @@min_src_send_time. These global limits will
also be used later to check the plausibility of other transactions, which are candidates
for a circular path.

Then we begin Phase 1 of the search. Starting from source_id, step forward two hops
(equals one transaction). Using Figure 5-4 as an example, this would step from Adam
to Ben. Also traverse two hops backward (Adam to Daisy). Iterate this combination of
steps, moving forward (or backward) in time until each direction has stepped halfway
around a maximum size circle. Table 5-2 shows the paths that would be traversed if
we consider the graph of Figure 5-4.

Table 5-2. Forward and reverse paths, using the graph of Figure 5-4

Iteration 1 2 3
Forward Adam→Ben Ben→Cor Cor→Daisy
Reverse Adam→Daisy Daisy→Cor Cor→Ben

The following code snippet shows a simplified version of one iteration of the forward
traversal. For brevity, the checking of timing and step constraints has been omitted:

 Fwd_set = SELECT tgt
 FROM Fwd_set:src - (User_Transfer_Transaction>:e) - Transaction:tgt
 WHERE tgt.ts >= @@min_src_send_time
 AND src.@min_fwd_dist < GSQL_INT_MAX

112 | Chapter 5: Detecting Fraud and Money Laundering Patterns

 AND tgt.@min_fwd_dist == GSQL_INT_MAX
 ACCUM tgt.@min_fwd_dist += src.@min_fwd_dist + 1
 … // POST-ACCUM clause to check time and step constraints
 ;

 Fwd_set = SELECT tgt
 FROM Fwd_set:src - (<User_Receive_Transaction:e) - User:tgt
 WHERE src.@min_fwd_dist < GSQL_INT_MAX
 AND tgt.@min_fwd_dist == GSQL_INT_MAX
 ACCUM tgt.@min_fwd_dist += src.@min_fwd_dist + 1
 … // POST-ACCUM clause to check time and step constraints
 HAVING tgt != source_id;

Looking at Table 5-2, we see that after the second iteration, a forward path and a
reverse path have met at a common point: Cor. We have a circle! But wait. What if
the Ben→Cor timestamp is later than the Cor→Daisy timestamp? If so, then it’s not a
valid circle.

In Phase 2 of the query, we discover and validate circular paths by doing the follow‐
ing. For the forward search, continue traversing forward but only along paths that
were previously traversed in the reverse direction and that move forward in time. In
our example, if max_transactions = 2 so that Phase 1 got as far as Ben→Cor, then
Phase 2 could continue on to Cor→Daisy, but only because we had already traversed
Daisy→Cor in Phase 1 and only if the timestamps continue to increase:

 Fwd_set = SELECT tgt
 FROM Fwd_set:src - (User_Transfer_Transaction>:e) - Transaction:tgt
 // tgt must have been touched in the reverse search above
 WHERE tgt.@min_rev_dist < GSQL_INT_MAX
 AND tgt.ts >= @@min_src_send_time
 AND src.@min_fwd_dist < GSQL_INT_MAX
 AND tgt.@min_fwd_dist == GSQL_INT_MAX
 ACCUM tgt.@min_fwd_dist += src.@min_fwd_dist + 1
 POST-ACCUM
 CASE WHEN
 tgt.@min_fwd_dist < GSQL_INT_MAX
 AND tgt.@min_rev_dist < GSQL_INT_MAX
 AND tgt.@min_fwd_dist + tgt.@min_rev_dist
 <= 2 * STEP_HIGH_LIMIT
 THEN
 tgt.@is_valid = TRUE
 END;

 Fwd_set = SELECT tgt
 FROM Fwd_set:src - (<User_Receive_Transaction:e) - User:tgt
 //tgt must have been touched in the reverse search above
 WHERE tgt.@min_rev_dist < GSQL_INT_MAX
 AND src.@min_fwd_dist < GSQL_INT_MAX
 AND tgt.@min_fwd_dist == GSQL_INT_MAX
 ACCUM tgt.@min_fwd_dist += src.@min_fwd_dist + 1
 POST-ACCUM

Implementing Financial Crime Pattern Searches | 113

 CASE WHEN
 tgt.@min_fwd_dist < GSQL_INT_MAX
 AND tgt.@min_rev_dist < GSQL_INT_MAX
 AND tgt.@min_fwd_dist + tgt.@min_rev_dist
 <= 2 * STEP_HIGH_LIMIT
 THEN
 tgt.@is_valid = TRUE
 END
 HAVING tgt != source_id;

After Phase 2, we have found our circles. There is a Phase 3 that traverses the circles
and marks the vertices and edges so that they can be displayed. Figure 5-5 and
Figure 5-6 show example results from circle detection, for maximum circle sizes of
four, five, and six transactions. As the circle size limit increases, more circles are
found.

Figure 5-5. Circle detection results for source_id = 111 and max_transactions of 4
and 5, respectively (see a larger version of this figure at https://oreil.ly/gpam0505)

114 | Chapter 5: Detecting Fraud and Money Laundering Patterns

https://oreil.ly/gpam0505

Figure 5-6. Circle detection results for source_id = 111 and max_transactions = 6 (see
a larger version of this figure at https://oreil.ly/gpam0506)

Chapter Summary
Financial fraud is a serious and costly problem that most businesses and all financial
institutions must face. Better and faster techniques to detect and stop fraud are
needed. We showed that graph data modeling and graph queries are powerful ways
to detect suspicious patterns of activity that would have otherwise gone unnoticed.
Graph modeling makes it easy to address three key phases for searching for patterns:
describing the search, performing the search, and examining the results. Later in
the book, we’ll show how graph machine learning provides more sophisticated and
accurate fraud detection.

More specifically, we have discussed three queries to detect and combat fraud and
money laundering. The first query demonstrated how we could detect if money flows
in a circular pattern. The second query showed how graphs could find suspicious
user behavior within a referral program. The third query showcased the money
flow between two networks of people. The fourth query showed how we could find
connections between people who send their money to the same person. The fifth
query detected whether someone used a fake account to send money to themselves.
The last query we discussed was about detecting a high volume of money transfers to
a person.

In the next chapter, we will offer a systematic approach to analyzing graphs. In
particular, we will delve into the rewarding world of graph measures and graph
algorithms.

Chapter Summary | 115

https://oreil.ly/gpam0506

PART II

Analyze

CHAPTER 6

Analyzing Connections for Deeper Insight

In the preceding chapters, we learned that representing data as a graph gives us the
power to look more deeply and broadly across our data so we can answer questions
more accurately and with more insight. We’ve looked at several use cases to see
examples of how to model data as a graph and how to query it. Now we want to take
a more methodical look at graph analytics. What do we mean when we say graph
analytics? What are some specific techniques we can use for graph analytics?

After completing this chapter, you should be able to:

• Define graph analytics and describe what distinguishes it from general data•
analytics

• Understand graph analytics’ requirements and some key methods, including•
breadth-first search and parallel processing

• Define several categories of graph algorithms that are useful for analytics•
• List a few algorithms within each category and give examples of real-world uses•

Understanding Graph Analytics
Let’s start by defining data analytics in general. Data analytics is making useful obser‐
vations and drawing conclusions about a body of data to help people understand
the significance of the data. Analytics transforms data into useful insights. Graph
analytics does the same thing, except that the structure of the data affects which
data we will examine and in what order. Connections are a form of data, and the
connections drive the course of the analysis.

Another distinguishing aspect of graph analytics is that it is good for addressing ques‐
tions about the connections. You could ask what the shortest chain of connections

119

is between Customer A and Customer B in a tabular set of data, but you are much
better equipped to perform that analysis if your data is a graph. We can summarize
our thoughts as follows:

Graph analytics is making observations and drawing conclusions on connected data
and about connected data.

Requirements for Analytics
To make an observation about a body of data, it’s obvious that we have to examine all
of that data or the rel evant subset and that there will be some form of computation
involved. If our data collection contains all sales transactions for a certain year, a
simple analysis would be to compute the total sales for each month and then to see if
the sales are trending upward, downward, or moving in a more complex way. If the
data is organized into a table, then we imagine scanning down the table, reading each
row. We also imagine that we need some place to hold our results—the monthly sales.
In fact, we’ll probably want to keep a running total as we read each row and add its
sales to one of the monthly sums.

Graph analytics has similar requirements: reading all the relevant data, performing
calculations and decisions on each data point, holding temporary results, and report‐
ing final results. The primary difference between graph analytics and tabular analytics
is that the graph’s connections affect both the nature of the data items and the order
in which we scan the data. There are also choices of methodology or architecture that
can make the computations and memory storage more efficient.

Graph Traversal Methods
In graph analytics, we follow the connections that lead us from one data point to
the next. Using the metaphor of the graph being a network of walking paths, it’s
common to say that we walk or traverse the graph. At first, it may seem that you
want to follow a chain of connections, the way an individual would walk. However,
when you look at the task you are trying to accomplish, it turns out that it may
make more sense to explore all the one-hop direct connections from your present
position one at a time, before following a connection of a connection. Following a
chain of connections is called depth-first search (DFS), and looking at all of your
direct connections before moving to the next tier of connections is called breadth-first
search (BFS). We mentioned these briefly in Chapter 2.

The following workflow explains both BFS and DFS. The difference is in the
order in which work gets processed, reflected in the order of vertices in the
Places_to_Explore list:

1. Put the source vertex into a processing list called Places_to_Explore. As a list, it1.
has an order, front to back.

120 | Chapter 6: Analyzing Connections for Deeper Insight

1 DFS prioritization is analogous to primogeniture for inheritance of titles, where the firstborn child has
priority for inheritance.

2. Remove the first vertex from the front of the Places_to_Explore list. If that2.
vertex is marked as Already_Visited, then skip steps 3 and 4.

3. Perform whatever work you want to do for each vertex, such as checking whether3.
a value matches your search query. Now mark the vertex as Already_Visited.

4. From the current vertex, get a list of all of its connected edges. If BFS, add that4.
list to the end of the Places_to_Explore list (queue). If DFS, add that list to the
front of the Places_to_Explore list (stack).

5. Repeat steps 2 to 4 until the Places_to_Explore list is empty.5.

With BFS, we follow a “fair” system in which every newly encountered vertex goes
to the back of the line. As a consequence, vertices get processed level by level, all the
vertices one hop from the source, then all the vertices two hops from the sources,
and so on. With DFS, we follow a “greedy” system, which processes one child of the
source and then puts its neighbors at the front of the line instead of at the back.1 That
means that in the third step, one lucky vertex that is three hops from the source will
get attention. In Figure 6-1, we see an example of BFS and DFS. Initially, only vertex 1
has a number. The other numbers are assigned in the order of visit.

Figure 6-1. Overview of breadth-first search (BFS) versus depth-first search (DFS)
methods

BFS is superior when you are looking for something as close as possible to the ground
truth best answer. Shortest path algorithms use BFS. DFS can be good if you expect
the answer to be multihop and there are many paths that satisfy the task.

If we intend to explore the entire graph and we have only one worker to process
information, then BFS and DFS have roughly equivalent efficiency. However, if paral‐
lel processing is available, then BFS wins out almost every time.

Understanding Graph Analytics | 121

Parallel Processing
Parallel rocessing is being able to do two or more tasks at the same time to cut down
on latency, that is, the total time from start to finish. To benefit from parallel process‐
ing, the overall task needs to be able to be split into multiple subtasks that can be
performed independently (“parallelizable”), and you must have multiple processors.
In addition, there is some management work to know how to split the task and then
merge the separate results into a final result.

BFS and parallel processing go well together. Most graph analytics tasks that use
BFS can be performed more efficiently with parallel processing. Imagine you want
to create a detailed map of a road network. You have a troop of surveyors (multiple
processors) who all start at Point A. At every fork in the road, you split up your
troops to get the work done faster (BFS with parallel processing). With software, you
have an advantage over the physical world. When one processor is finished with its
current task, it can jump to anywhere in the data network where it is needed for the
next task.

Aggregation
One of the fundamental tasks in analytics is aggregation: taking a set of values,
performing some operation on them, and producing a single result that characterizes
the set. The most common aggregation functions are count, sum, and average.

Consider this analysis of purchase behavior: given a Customer-Purchases-Products
graph, find the three most purchased products that are bought within one week after
Product X and in the same product family as Product X. Here is how we can solve it
with graph analytics:

1. Start at the vertex representing Product X.1.
2. Traverse along Purchases edges to find all the Customers who purchased Prod‐2.

uct X. At each of those traversal paths, note the purchase date.
3. From each of those Customers, scan their other Purchases edges for the one-3.

week time window starting from that purchase date. For every Product that fits
in that time window, add it to a global data structure, which allows adding new
items and also updating the count of such items.

4. Sort the global counts to find the three most popular follow-up purchases.4.

Let’s analyze that workflow and what would be needed:

• Starting from a single vertex, we used BFS for two hops, filtering the second•
hop by a date range determined by the first hop. BFS requires bookkeeping (the
Places_to_Explore list mentioned previously). You’ve already seen in previous

122 | Chapter 6: Analyzing Connections for Deeper Insight

chapters how the GSQL language has built-in support, using a SELECT-FROM-
ACCUM statement and saving the result of one level of traversal as the vertex set
result of that statement.

• Each path of the BFS needs to temporarily keep track of its own time window.•
The math is simple here: add seven days to a given timestamp. GSQL has local
variables that can perform the task of temporarily holding data for later analysis.

• The main aggregation work is collecting the follow-up purchases and finding•
which are the three most popular. We need a global data structure that each
processing agent can access to add a new item. The simplest data structure would
be a list that can hold duplicate instances of the same item. After we finish
looking for follow-up purchases, we would then need to read through the list to
see how many times each item is mentioned and to sort the counts to get the
top three. A more sophisticated way would be to use a map that holds data pairs:
productID:count. This would require support for two operations: insert a new
productID and increment a count. If we want to use parallel BFS, we need to be
able to support concurrent inserts and increments. After getting the final counts,
we need to sort to get the top three.

The GSQL language provides built-in support for parallel aggregation using objects
called accumulators. Accumulators can be global or per vertex. Accumulators can
hold scalar values, like a sum or average, or they can hold collections, like a list, set,
map, or heap. For this example of finding the most popular follow-up purchases, a
global MapAccum would satisfy most of the work.

Using Graph Algorithms for Analytics
Some analytics tasks require writing custom database queries: the question being
asked is unique and quite specific to the dataset and use case. In other cases, the
analytical question is fairly common. Having a library of standard analytical tools,
with parameters so they can be adjusted to specific datasets and tasks, can be very
useful. For graph analytics, we have such a toolkit; it’s a graph algorithm library, or
graph data science library, as they are sometimes known. Earlier in the book, we
described graph algorithms as a type of graph query, used a similarity algorithm, and
mentioned a few other algorithm types like shortest path. We’ve intentionally kept
their use to a minimum until this chapter, where we can go into depth.

Graph Algorithms as Tools
First, let’s define the term algorithm. An algorithm is an unambiguous, step-by-step,
and finite set of instructions to perform a specific task. Think of an algorithm
like a precise recipe. When you have an algorithm for a task, you know the task
is achievable. For a subclass called deterministic algorithms, the same input always

Using Graph Algorithms for Analytics | 123

yields the same output, no matter who performs the algorithm or when. Algorithms
aren’t just for analytics. For example, there’s an algorithm for storing your color and
font size preferences for an ereader, and a companion algorithm for applying your
preferences every time you start the reader. Those aren’t really analytical tasks, but
they are tasks nonetheless.

When we say graph algorithms, however, it suggests more than just “algorithms
about graphs.” First, the term usually implies algorithms that are generic in the sense
that they are designed to work on a whole class of graphs—say, any graph with
undirected edges—rather than only graphs with certain schema and semantic details,
such as banking transaction graphs. Second, the term graph algorithms often refers to
solutions for analytical tasks.

By focusing on generic analytical tasks, graph algorithms become excellent tools for
graph analytics. Over the years, theorists and data analysts have identified a number
of common and generic analytical tasks for graphs, and have developed algorithms
to perform these tasks. A graph algorithm library is a thoughtful collection of graph
algorithms, able to perform a variety of different tasks. The library collection is
crafted to span a breadth of useful functions, and hence it is a toolkit.

Just as with skilled trades like woodworking or automobile repair, data analytics
requires training and experience to use the tools well. As a graph algorithm user, you
need to learn what types of tasks you can perform with each algorithm, what type of
material (data) it is designed for, what is the right way to use it, and when not to use it
at all. As you grow in sophistication, you will better appreciate the trade-offs between
algorithms that perform similar functions. You will also see innovative ways to use an
algorithm and how using algorithms in combination can perform more complex and
sophisticated tasks than any single algorithm.

Because we are talking about software and data, data analysts have one advantage
over craftspersons using forged steel tools on wood and metal materials: our tools
and our materials are extremely malleable. As an algorithm user, it is helpful but
not essential to understand how an algorithm works. By analogy, you don’t need to
know how to design a voltmeter in order to measure a battery’s voltage. However, if
you want to modify an algorithm to better fit your situation, then it is necessary to
understand that algorithm at least in part.

Any user of graph algorithms needs to follow one cautionary note: apply an algo‐
rithm only to those vertices and edges that are semantically appropriate for your
desired analysis. Most real-world graphs contain multiple types of vertices and edges,
each with their own semantic roles. For example, we might have Book and Reader
vertices and Bought, Read, and Reviewed edges. While you could run PageRank on
the whole graph, the results would not make much sense, because it doesn’t make
sense to rank Books and Readers on the same scale. Due to their generic nature, most

124 | Chapter 6: Analyzing Connections for Deeper Insight

graph algorithms ignore semantic typing. Whether your analysis will be meaningful
when types are ignored is something that you will have to decide.

We’ve covered a lot of important concepts so far, so let’s summarize:

• Graph analytics leverages data connections to obtain deeper insights about the•
data.

• Breadth-first search, parallel processing, and aggregation are key ingredients of•
efficient graph analytics.

• Graph algorithms act as tools for common graph analytics tasks.•
• You can perform more complex tasks by using them in combination.•
• Using graph algorithms is a craft. The more you know about the tools and the•

materials, the better a craftsperson you will be.

Table 6-1 shows the key terminologies of data analytics and algorithms that we have
introduced in this chapter.

Table 6-1. Glossary of graph analytics and algorithm terms

Term Definition
Data analytics The process of analyzing data using statistical methods to obtain insights
Graph analytics A subset of data analytics that focuses on analyzing relationships between entities in a graph
Algorithm An unambiguous, step-by-step, and finite set of instructions to perform a specific task
Deterministic
algorithm

A subset of algorithms where the same inputs will always produce the same results

Graph algorithm A subset of algorithms that are generic for a class of graphs and a solution to analyze graph
structures

Walk/traverse a graph The process of exploring the vertices and edges of the graph in a specific order from the present
position

Graph Algorithm Categories
Consider a couple more examples of graph analytics tasks:

Community ranking
In a social network, rank subcommunities based on the average number of new
discussions per member per week.

Similar patient profiles
Given a patient with certain symptoms, personal background, and treatment
to date, find similar patients so that successes and setbacks can be compared,
leading to better overall care.

The first task presumes we have well-defined communities. In some cases, we want
communities defined not by labels but by actual social behavior. We have graph

Using Graph Algorithms for Analytics | 125

algorithms to find communities based on connections and relational behavior. The
second task presumes we have a way to measure similarity. There is also a family of
algorithms for graph-based similarity.

This section provides an overview of the most common graph algorithms and algo‐
rithm categories in graph analytics today. We will look at five categories:

• Paths and trees•
• Centrality•
• Community•
• Similarity•
• Classification and prediction•

Path and tree algorithms
One of the classic graph-based tasks is to find the shortest path from one vertex to
another. Knowing a shortest path is useful not only for finding the best delivery
and communication routes but also for seeing if persons or processes are closely
associated. Is this person or organization closely associated with parties of concern?
We can also use shortest path analysis to check the lineage or provenance of a
document or other product.

The task might seem easy, but consider this example: suppose you wanted to get in
touch with a famous but private person, say Keanu Reeves. It is a personal matter,
so you can only go through personal contacts, and the fewer intermediary contacts,
the better. You don’t know which of your acquaintances might know this person.
Therefore, you ask all of them if they know Mr. Reeves. None of them do, so would
they please ask their acquaintances? Every contact asks their acquaintances to check
until finally someone knows Keanu Reeves personally.

This connection-of-a-connection process is exactly how we find shortest paths in
an unweighted graph. It is in fact breadth-first search. You can see how parallel
processing would be appropriate. All of your acquaintances can work simultaneously
to check their acquaintances.

Figure 6-2 shows an example. In round 1, you (vertex A) check all of your direct
connections (B, C, and D). Each of them gets marked with a 1. In round 2, each
of these newly visited vertices checks their connections. B has two connections (A
and E), but only E is new. C has three connections, but only F is new. D has no
connections that have not been visited before. Therefore, E and F are our new
“frontier” vertices and are marked with a 2. In round 3, G and H are our frontier
vertices. H is in fact Keanu Reeves, so we are done. Note that there are two paths:

126 | Chapter 6: Analyzing Connections for Deeper Insight

A-B-E-H and A-C-F-H. Also note that while we were looking for the path to Keanu
Reeves, we also found paths to intermediate vertices like E and F.

Figure 6-2. Unweighted shortest path

How much compute effort does it take to get our answer? It depends on how close
our destination happens to be. Computer scientists often look at the worst case or
average effort. Since our algorithm finds paths to intermediate vertices, what if we
change that task: find a path starting from one source and to every destination? If we
traverse every edge in the graph exactly once, we should be able to get our answer.
Actually, we might need to traverse twice: initially, we attempt A→B, then later B→A
and discover that we have already been to A. We’ll need to mark each vertex as
visited, set a distance, and later check that it’s been visited. So we have some activities
that scale with the number of edges (E), and some that scale with the number of
vertices (V). So the total amount of effort is on the order of E + V. In standard
notation, we say it is O(E + V), pronounced “big oh E plus V.” In a connected graph, E
is always at least as big as V, and we care about the biggest factor, so we can simplify it
to O(E).

What if some connections are better than others? For example, it might be three
blocks from your house to a store, but some blocks are longer than others. This
is the shortest path in a weighted graph problem. When the edges are weighted, we
have to proceed more carefully, because a path with more steps might still be the less
costly one. In Figure 6-3, we have added weights to the edges and displayed the first
two rounds of a modified search algorithm, attributed to computer science pioneer
Edsger Dijkstra. First, we initialize every vertex with the length of the best-known
path. Since we don’t know any paths yet (except from A to A), every distance is set
to infinity at first. Then in round 1, we traverse from A to each of its neighbors. We
label each of them with the actual length of the edge traversed plus the distance from
the source of that edge back to the starting point. For example, to get to B, the total
distance is the weight of edge A-B, plus the distance of source A back to the starting
point, distance(A,A) = 2 + 0 = 2.

Using Graph Algorithms for Analytics | 127

Figure 6-3. Weighted shortest path

In the next round, we traverse from the frontier vertices to all of their neighbors.
Here we see a difference from the unweighted path algorithm. We consider the path
from D to C, even though C has been visited before. We see that the path A-D-C has
a total length of weight(A,D) + distance(D,C) = 2 + 1 = 3. This is less than the length
of the path A-C = 4. C will be marked with the path and length of the shortest of
the several paths found so far. In a weighted graph, even after we have found a path,
we might need to keep searching to see if there is a path with more hops but less
total weight. For this reason, finding the shortest path in a weighted graph takes more
compute effort than in an unweighted graph.

We’ll consider one more path task, the minimal spanning tree (MST) problem. In
graph theory, a tree is a set of N vertices and exactly N−1 edges that connect the
vertices. An interesting side effect is that there will be exactly one path in the tree
to get from each vertex to each other vertex. A minimal spanning tree in a weighted
graph is a tree that has the least total edge weight. One use of MST is to provide
connectivity at the lowest total cost, such as paving the least amount of road or
provisioning the least amount of network cable.

There are several algorithms of similar efficiency for solving the MST problem. Prim’s
algorithm is perhaps the simplest to describe. We’ll use Figure 6-4 as an example:

1. Make a list of all the edges, sorted by weight.1.
2. Pick an edge with least weight (C-D). Every edge we pick becomes part of our2.

tree.
3. Pick the lightest edge that has one end in the partial tree and one end not: (A-D).3.
4. Repeat step 3 until we have a total of N−1 edges.4.

128 | Chapter 6: Analyzing Connections for Deeper Insight

Figure 6-4. Minimal spanning tree

Following these rules, the next selected edges will be A-B, B-E, E-F, and F-H. Then
we have a tie. Both E-G and H-G have a weight of 3, so either one can be used to
complete our tree.

Centrality algorithms
Which is the most centrally located vertex in a graph? That depends on how we
define centrality. The TigerGraph Graph Data Science (GDS) Library has more than
10 different centrality algorithms.

Closeness centrality scores each vertex based on the average distance from it to every
other vertex in the graph. Typically, we invert this average distance, so that we get
higher scores for shorter distances. Closeness centrality matters to organizations
that want to select the best location for their retail store, government office, or
distribution center. If they want to minimize the average distance that patrons or
packages need to travel, they use closeness centrality. How do we measure distance?
Shortest path algorithms can do this. While there are more efficient ways to measure
average distance than to calculate every individual shortest path, the principle still
holds: algorithms can be building blocks for solving more complex problems. There
are variations of closeness centrality for directed graphs and for weighted graphs.

Let’s compute some closeness centralities for the weighted graph in Figure 6-4. Verti‐
ces E and F look like they might be near the center. For E, we want the shortest path
distances to A, B, C, D, F, G, and H. By visual inspection, we see that the distances are
4 + 2 + 5 + 6 + 2 + 3 + 4 = 26. For F, we want distances to A, B, C, D, E, G, and H,
which are 6 + 4 + 3 + 4 + 2 + 5 + 2 = 26, so it’s a tie.

Harmonic centrality is a minor variation of closeness centrality. Instead of being
the inverse of the average distance, harmonic centrality is the average (or sum) of
the inverse distances. One advantage of harmonic centrality is that it can deal with
unconnected vertices by saying their distance is infinite, whose inverse value is simply
zero. This brings up a key point when selecting an algorithm: do you need to handle
unconnected vertices?

Using Graph Algorithms for Analytics | 129

Betweenness centrality poses a different situation: suppose you consider all the short‐
est paths in a graph, from each vertex to each other vertex. If there are multiple
shortest paths (as we saw in Figure 6-2), consider all of them. Which vertex sits on
the most paths? A vertex with high betweenness is not necessarily the destination,
but it will get a lot of pass-through traffic. Whether you are trying to find the
best location for a gas station or assessing which network routers are most vital,
betweenness can be a key measure. Again, we see that one algorithm (shortest path) is
a building block for another (betweenness).

It might surprise you to know that PageRank can be categorized as a centrality
algorithm. PageRank was designed to find the most important web pages on the
internet. More precisely, PageRank measures referential authority in which a page’s
importance increases if more pages point to it or if the authority of those pages is
higher. Another way of looking at it is the random surfer model.

Imagine someone is surfing the internet. They start on a random page. Each minute,
the surfer goes to another page. Most of the time, they follow a link on that page
to another page; every link has equal probability of being chosen. There is a small
fixed probability of not following a link and just going directly to a random page.
After a very long time, what is the probability that the random surfer will be on a
particular page? The probability is that page’s PageRank score. Pages that get visited
more often due to the graph’s pattern of connections are deemed to have higher
centrality. The mathematical magic of PageRank is that the rankings aren’t affected
by where you start the random walk. Note that PageRank is designed for directed
graphs, whereas most of the tasks we have looked at so far are sensible for either
directed or undirected graphs.

Community algorithms
Another meaningful analysis of graphs is to understand the implicit groupings of ver‐
tices, based on how they connect to one another. High levels of interaction imply high
levels of influence, resilience, or information passing, which is useful to understand
and predict everything from market segmentation and fraudster behavior to group
resilience to viral spread of ideas or biological contagions.

There are a number of possible ways to define a community, each with a correspond‐
ing algorithm or algorithms. We can sort them based on how many connections to
the community are required to be considered part of the community. At the low end
of the spectrum, when only a single connection is sufficient to be considered part of
the community, we call the group a connected component, or just component for short.
At the high end for connectivity, when every vertex has a direct connection to every
other community member, this is a complete subgraph. The vertices of a complete
subgraph constitute a clique. In between these extremes are k-cores. A k-core is a
subgraph where every vertex has direct connections to k or more other members.

130 | Chapter 6: Analyzing Connections for Deeper Insight

A connected component is a k-core where k = 1. A clique contain‐
ing c vertices is a k-core where k = (c –1), the largest possible value
for k.

Figure 6-5 shows these three classes of communities applied to the same graph. On
the left, every vertex is a member of one of three connected components. In the
center graph, we have two k-cores for k = 2, but four vertices are excluded. On the
right, we have two small cliques; many vertices do not qualify.

Figure 6-5. Community types classified by density of connection

Any of these definitions can enforce edge directionality; for connected components,
we even have names for this. If the edges are undirected (or we ignore the direc‐
tionality), then we call it a weakly connected component (WCC). If the edges are
directed and it is possible for each vertex to reach every other vertex by following a
directed path, then it is a strongly connected component (SCC). In Figure 6-6, we add
directionality to the edges of our example graph and see how this can rule out some
vertices.

Using Graph Algorithms for Analytics | 131

Figure 6-6. Weakly and strongly connected components

The preceding definitions of community all have strict definitions, but in some
real-life applications, a more flexible definition is needed. We want communities
that are relatively well connected. To address this, network scientists came up with
a measure called modularity, which looks at relative density, comparing the density
within communities versus the density of connections between communities. This
is like looking at the density of streets within cities versus the road density between
cities. Now imagine the city boundaries are unknown; you just see the roads. If you
propose a set of city boundaries, modularity will rate how good a job you did of max‐
imizing the goal of “dense inside; not dense outside.” Modularity is a scoring system,
not an algorithm. A modularity-based community algorithm finds the community
boundaries that produce the highest modularity score.

To measure modularity (Q), we first partition the vertices into a set of communities
so that every vertex belongs to one community. Then, considering each edge as one
case, we calculate some totals and averages:

Q = [actual fraction of edges that fall within a community]
minus [expected fraction of edges if edges were distributed at random]

“Expected” is used in the statistical sense. If you flip a coin many times, you expect
50/50 odds of heads versus tails. Modularity can handle weighted edges by using
weights instead of simple counts:

Q = [average weight of edges that fall within a community]
minus [expected weight of edges if edges were distributed at random]

Note that the average is taken over the total number of edges. Edges that run from
one community to another add zero to the numerator and add their weight to the
denominator. It is designed this way so that edges that run between communities hurt
your average and lower your modularity score.

132 | Chapter 6: Analyzing Connections for Deeper Insight

What do we mean by “distributed at random”? Each vertex v has a certain number of
edges that connect to it: the degree of a vertex is d(v) = total number (or total weight)
of v’s edges. Imagine that each of these d(v) edges picks a random destination vertex.
The bigger d(v) is, the more likely that one or more of those random edges will make
a connection to a particular destination vertex. The expected (i.e., statistical average)
number of connections between a vertex v1 and a vertex v2 can be computed as:

Erand wt v1, v2 = d v1 d v2
2m

where m is the total number of edges in the graph. For the mathematically inclined,
the complete formula for modularity Q is:

Q = 1
2m ∑

i, j ∈ G
wt i, j − d i d j2m δ comm i , comm j

where wt(i,j) is the weight of the edge between i and j, comm(i) is the community ID
of vertex i, and δ a, b is the Kronecker delta function, which equals 1 if a and b are
equal and 0 otherwise.

There are a number of algorithms that try to efficiently search for the community
assignment that yields the highest modularity. Figure 6-7 shows two possible commu‐
nity groupings, but there is an exponentially large number of possible groupings.
Therefore, algorithms take some shortcuts and make some assumptions to efficiently
find a very good answer, if not the best answer.

Figure 6-7. Two possible community colorings for the same graph

The most established modularity optimization algorithm is the Louvain algorithm,
named after the University of Louvain. Louvain starts by considering each individual
vertex as a community. It then tests each vertex to see if the global modularity would
be improved by merging it with one of its neighboring communities and treating
the merged community as a single vertex. After performing one round of mergings,
it repeats with the new set of larger communities. It stops when merging no longer
improves the modularity. Several improvements to the speed and clustering quality

Using Graph Algorithms for Analytics | 133

of Louvain have been proposed. The Leiden algorithm incorporates many of these
improvements.

Similarity algorithms
What makes two things similar? We usually identify similarities by looking at observ‐
able or known properties: color, size, function, and so forth. A passenger car and a
motorcycle are similar because they are both motorized land vehicles for one or a few
passengers. A motorcycle and a bicycle are similar because they are both two-wheeled
vehicles. But how do we decide whether a motorcycle is more similar to a car or to
a bicycle? For that matter, how would we make such decisions for a set of persons,
products, medical conditions, or financial transactions? We need to agree upon a
system for measuring similarity. Is there some way that we can let the graph itself
suggest how to measure similarity?

A graph can give us contextual information to help us decide how to determine
similarity. Consider the following axiom:

An entity is characterized by its properties, its relationships, and its neighborhood.

Therefore, if two vertices have similar properties, similar relationships, and similar
neighborhoods, then they should be similar. What do we mean by similar neighbor‐
hoods? Let’s start with a simpler case—the exact same neighborhood:

Two entities are similar if they connect to the same neighbors.

In Figure 6-8, Person A and Person B have three identical types of edges (Purchased,
hasAccount, and Knows), connecting to the three exact same vertices (Phone model Y,
Bank Z, and Person C, respectively). It is not necessary, however, to include all types
of relationships or to give them equal weight. If you care about social networks, for
example, you can consider only friends. If you care about financial matters, you can
consider only financial relationships.

134 | Chapter 6: Analyzing Connections for Deeper Insight

Figure 6-8. Two persons sharing the same neighborhood

To reiterate the difference between community and similarity: all five entities in
Figure 6-8 are part of a connected component called community. However, we would
not say that all five are similar to one another. The only case of similarity suggested by
these relationships is Person A being similar to Person B.

Neighborhood similarity
It’s rare to find two entities that have exactly the same neighborhoods. We’d like
a way to measure and rank the degree of neighborhood similarity. The two most
common measures for ranking neighborhood similarity are Jaccard similarity and
cosine similarity. Some others are overlap similarity and Pearson similarity.

Jaccard similarity
Jaccard similarity measures the relative overlap between two general sets. Suppose
you run Bucket List Travel Advisors, and you want to compare your travelers to
one another based on which destinations they have visited. Jaccard similarity would
be a good method for you to use; the two sets would be the destinations visited by
each of two customers being compared. To formulate Jaccard similarity in general
terms, suppose the two sets are N(a), the neighborhood of vertex a, and N(b), the
neighborhood of vertex b. Then the Jaccard similarity of a and b is:

Using Graph Algorithms for Analytics | 135

jaccard(a, b) = number_of_sℎared_neigℎbors
size(N (a)) + size(N (b)) − number_of_sℎared_neigℎbors

= number_of_sℎared_neigℎbors
number_of_unique_neigℎbors

= |N (a) ∩ N (b)|
|N (a) ∪ N (b)|

The maximum possible score is 1, which occurs if a and b have exactly the same
neighbors. The minimum score is 0 if they have no neighbors in common.

Consider the following example: three travelers, A, B, and C, have traveled to the
places shown in Table 6-2.

Table 6-2. Dataset for Jaccard similarity examplea

Destinations A B C
Amazon Rainforest, Brazil ✔ ✔
Grand Canyon, USA ✔ ✔ ✔
Great Wall, China ✔ ✔
Machu Picchu, Peru ✔ ✔
Paris, France ✔ ✔
Pyramids, Egypt ✔
Safari, Kenya ✔
Taj Mahal, India ✔
Uluru, Australia ✔
Venice, Italy ✔ ✔
a The use of a table for our small example may suggest that a graph structure is not needed. We assume you already decided
to organize your data as a graph. The table is an easy way to explain Jaccard similarity.

We can use the table’s data to compute Jaccard similarities for each pair of travelers:

• A and B have three destinations in common (Amazon, Grand Canyon, and•
Machu Picchu). Collectively, they have been to nine destinations: jaccard(A, B) =
3/9 = 0.33.

• B and C have only one destination in common (Grand Canyon). Collectively•
they have been to 10 destinations: jaccard(B, C) = 1/10 = 0.10.

• A and C have three destinations in common (Grand Canyon, Paris, and Venice).•
Collectively, they have been to seven destinations: jaccard(A, C) = 3/7 = 0.43.

Among these three, A and C are the most similar. As the proprietor, you might
suggest that C visit some of the places that A has visited, such as the Amazon and
Machu Picchu. Or you might try to arrange a group tour, inviting both of them to
somewhere they both have not been to, such as Uluru, Australia.

136 | Chapter 6: Analyzing Connections for Deeper Insight

Cosine similarity
Cosine similarity measures the alignment of two sequences of numerical character‐
istics. The name comes from the geometric interpretation in which the numerical
sequence is the entity’s coordinates in space. The data points on the grid (the other
type of “graph”) in Figure 6-9 illustrate this interpretation.

Figure 6-9. Geometric interpretation of numeric data vectors

Point A represents an entity whose feature vector is (2,0). B’s feature vector is (3,1).
Now we see why we call a list of property values a “vector.” The vectors for A and B
are somewhat aligned. The cosine of the angle between them is their similarity score.
If two vectors are pointed in exactly the same direction, the angle between them is 0;
the cosine of their angle is 1. cos(A,C) is 0 because A and C are perpendicular; the
vectors (2,0) and (0,2) have nothing in common. cos(A,D) is –1 because A and D are
pointed in opposite directions. So, cos(x,y) = 1 for two perfectly similar entities, 0 for
two perfectly unrelated entities, and –1 for two perfectly anticorrelated entities.

Suppose you have scores across several categories or attributes for a set of entities.
The scores could be ratings of individual features of products, employees, accounts,
and so on. Let’s continue the example of Bucket List Travel Advisors. This time, each
customer has rated their enjoyment of a destination on a scale of 1 to 10, so we have
numerical values, not just yes/no, shown in Table 6-3.

Table 6-3. Dataset for cosine similarity example

Destination A B C
Amazon Rainforest, Brazil 8
Grand Canyon, USA 10 6 8
Great Wall, China 5 8

Using Graph Algorithms for Analytics | 137

Destination A B C
Machu Picchu, Peru 8 7
Paris, France 9 4
Pyramids, Egypt 7
Safari, Kenya 10
Taj Mahal, India 10
Uluru, Australia 9
Venice, Italy 7 10

Here are steps for using this table to compute cosine similarity between pairs of
travelers:

1. List all the possible neighbors and define a standard order for the list so we can1.
form vectors. We will use the top-down order in Table 6-3, from Amazon to
Venice.

2. If each vertex has D possible neighbors, this gives us vectors of length D. For2.
Table 6-3, D = 10. Each element in the vector is either the edge weight, if that
vertex is a neighbor, or the null score, if it isn’t a neighbor.

3. Determining the right null score is required to ensure that your similarity scores3.
mean what you want them to mean. If a 0 means someone absolutely hated a
destination, it is wrong to assign a 0 if someone has not visited a destination.
A better approach is to normalize the scores. You can either normalize by entity
(traveler), by neighbor/feature (destination), or by both. The idea is to replace
the empty cells with a default score. You could set the default to be the average
destination, or you could set it a little lower than that, because not having visited
a place is a weak vote against that place. For simplicity, we won’t normalize the
scores; we’ll just use 6 as the default rating. Then traveler A’s vector is Wt(A) = [8,
10, 5, 8, 9, 6, 6, 6, 6, 7].

4. Then, apply the cosine similarity:4.

cosine a, b = Wt a ·W b

∥ Wt a ∥ ∥ Wt b ∥

=
∑i = 1
D

Wt a iWt b i

∑i = 1
D

Wt a i
2 ∑i = 1

D
Wt b i

2

Wt(a) and Wt(b) are the neighbor connection weight vectors for a and b, respectively.
The numerator goes element by element in the vectors, multiplying the weight from a
by the weight from b, then adding together these products. The more that the weights
align, the larger the sum we get. The denominator is a scaling factor, the Euclidean
length of vector Wt(a) multiplied by the length of vector Wt(b).

138 | Chapter 6: Analyzing Connections for Deeper Insight

Let’s look at one more use case, people who rate movies, to compare how Jaccard and
cosine similarity work. In Figure 6-10, we have two persons, A and B, who have each
rated three movies. They have both rated two of the same movies, Black Panther and
Frozen.

Figure 6-10. Similarity of persons who rate movies

If we only care about what movies the persons have seen and not about the scores,
then Jaccard similarity is sufficient and easier to compute. This would also be your
choice if scores were not available or if the relationships were not numeric. The
Jaccard similarity is (size of overlap) / (size of total set) = 2 / 4 = 0.5. That seems like a
middling score, but if there are hundreds or thousands of possible movies they could
have seen, then it’s a very high score.

If we want to take the movie ratings into account to see how similar A’s and B’s taste
are, we should use cosine similarity. Assuming the null score is 0, then A’s neighbor
score vector is [5, 4, 3, 0] and B’s is [4, 0, 5, 5]. For cosine similarity, the numerator
is [5, 4, 3, 0] ⋅ [4, 0, 5, 5] = (5)(4)+(4)(0)+(3)(5)+(0)(5) = 35. The denominator =

52 + 42 + 32 + 02 42 + 02 + 52 + 52 = 50 66 = 57 . 446. The final result is 0.60927.
This again seems like a reasonably good score—not strong similarity, but much better
than a random pairing.

Using Graph Algorithms for Analytics | 139

2 Glen Jeh and Jennifer Widom, “SimRank: A Measure of Structural-Context Similarity,” KDD ’02: Proceedings
of the Eighth ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (July 2002):
538–543, https://dl.acm.org/doi/10.1145/775047.775126.

Use Jaccard similarity when the features of interest are yes/no or
categorical variables.
Use cosine similarity when you have numerical variables. If you
have both types, you can use cosine similarity and treat your yes/no
variables as having values 1/0.

Role similarity
Earlier we said that if two vertices have similar properties, similar relationships, and
similar neighborhoods, then they should be similar. We first examined the situation
in which the neighborhoods contained some of the exact same members, but let’s
look at the more general scenario in which the individual neighbors aren’t the same,
just similar.

Consider a graph of family relationships. One person, Jordan, has two living parents
and is married to someone who was born in a different country, and they have three
children together. Another person, Kim, also has two living parents and is married to
someone born in another country, and together they have four children. Jordan and
Kim don’t have any neighboring entities (parents, spouses, or children) in common.
The number of children is similar but not exactly the same. Nevertheless, Jordan and
Kim are similar because they have similar relationships. This is called role similarity.

Moreover, if Jordan’s spouse and Kim’s spouse are similar, that’s even better. If Jordan’s
children and Kim’s children are similar in some way (ages, hobbies, etc.), that’s even
better. You get the idea. Instead of people, these could be products, components in a
supply chain or power distribution network, or financial transactions.

Two entities have similar roles if they have similar relationships to entities, which
themselves have similar roles.

This is a recursive definition: A and B are similar if their neighbors are similar. Where
does it stop? What is the base case where we can say for certain how much two things
are similar?

SimRank
In their 2002 paper, Glen Jeh and Jennifer Widom proposed SimRank,2 which meas‐
ures similarity by having equal-length paths from A and B both reach the same
individual. For example, if Jordan and Kim share a grandparent, that contributes to
their SimRank score. The formal definition of SimRank is:

140 | Chapter 6: Analyzing Connections for Deeper Insight

https://dl.acm.org/doi/10.1145/775047.775126

3 Ruoming Jin, Victor E. Lee, and Hui Hong, “Axiomatic Ranking of Network Role Similarity,” KDD ’11:
Proceedings of the 17th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining
(August 2011): 922–930, https://doi.org/10.1145/2020408.2020561.

simrank a, b = C
In a In b

∑u ∈ In a ∑v ∈ In b simrank In u , In v

simrank a, a = 1

In(a) and In(b) are the sets of in-neighbors of vertices a and b, respectively; u is a
member of In(a); v is a member of In(b); and C is a constant between 0 and 1 to
control the rate at which neighbors’ influence decreases as distance from a source
vertex increases. Lower values of C mean a more rapid decrease. SimRank computes
an N × N array of similarity scores, one for each possible pair of vertices. This
differs from cosine and Jaccard similarity, which compute a single pair’s score on
demand. It is necessary to compute the full array of SimRank scores because the
value of SimRank(a,b) depends of the SimRank score of pairs of their neighbors (e.g.,
SimRank(u,v)), which in turn depends on their neighbors, and so on. To compute
SimRank, you initialize the array so that SimRank(a,b) = 1 if a = b; otherwise, it is
0. Then calculate a revised set of scores by applying the SimRank equation for each
pair (a,b) where the SimRank scores on the right side are from the previous iteration.
Note that this is like PageRank’s computation, except that we have N × N scores
instead of just N scores. SimRank has a few weaknesses. It only finds similarity if two
entities eventually find some vertex that is the same distance from both of them. This
is too rigid for some cases. It would not work for Jordan and Kim unless our graph
contained their common relatives.

RoleSim
To address these shortcomings, Ruoming Jin, Victor E. Lee, and Hui Hong intro‐
duced RoleSim3 in 2011. RoleSim starts with the (over)estimate that the similarity
between any two entities is the ratio of the sizes of their neighborhoods. The initial
estimate for RoleSim(Jordan, Kim) would be 5/6. RoleSim then uses the current
estimated similarity of their neighbors to make an improved guess for the next round.
RoleSim is defined as follows:

rolesim a, b = 1 − β max
M a, b

∑ u, v ∈ M a, b rolesim u, v
max N u , N v + β

rolesim0 a, b = min N u , N v
max N u , N v

The parameter β is similar to SimRank’s C. The main difference is the function
M. M(a,b) is a bipartite matching between the neighborhoods of a and b. This is
like trying to pair up the three children of Jordan with the four children of Kim.
M(Jordan, Kim) will consist of three pairs (and one child left out). Moreover, there
are 24 possible matchings. For computational purposes (not actual social dynamics),

Using Graph Algorithms for Analytics | 141

https://doi.org/10.1145/2020408.2020561

4 In the academic literature for graph data science, these two tasks are usually known as node classification and
link prediction.

assume that the oldest child of Jordan selects a child of Kim; there are four options.
The next child of Jordan picks from the three remaining children of Kim, and the
third child of Jordan can choose from the two remaining children of Kim. This
yields (4)(3)(2) = 24 possibilities. The max term in the equation means that we select
the matching that yields the highest sum of RoleSim scores for the three chosen
pairs. If you think of RoleSim as a compatibility score, then we are looking for the
combination of pairings that gives us the highest total compatibility of partners. You
can see that this is more computational work than SimRank, but the resulting scores
have nicer properties:

1. There is no requirement that the neighborhoods of a and b ever meet.1.
2. If the neighborhoods of a and b “look” exactly the same, because they have2.

the same size, and each of the neighbors can be paired up so that their neighbor‐
hoods look the same, and so on, then their RoleSim score will be a perfect 1.
Mathematically, this level of similarity is called automorphic equivalence.

Classification and prediction algorithms
Not only can graph algorithms compute descriptive properties such as centrality or
similarity, but they also can take on the predictive side of data science. One of the
most in-demand uses for graph analytics employs vertex classification methods to
predict whether a particular transaction is fraudulent. We’ll wrap up our chapter
by looking at a few algorithms for predictive tasks relevant to graphs: predicting
the class of a vertex and predicting the future success or the present existence of a
relationship.4 We often associate prediction with guessing the future, but an equally
important application is trying to predict facts about the current world, acknowledg‐
ing that our database doesn’t know everything.

Humans navigate the world by constantly performing entity classification. Every time
we encounter something we have not seen before, our brains try to assign it to one
of the categories of things we already know. We even classify people, which affects
how we perceive them. In our minds, we have thousands of categories of items, each
defined by some key characteristics. We then subconsciously perform the duck test:
if it looks like a duck, swims like a duck, and quacks like a duck, it’s a duck. If we
take a more quantitative approach and say that we are trying to find the most matches
between the properties of some known category and this new item, we have just
described Jaccard similarity.

The natural way to perform classification and prediction in a graph is to leverage
graph-based similarity. Compute the similarity between the vertex in question and

142 | Chapter 6: Analyzing Connections for Deeper Insight

other vertices by applying a formula like cosine or Jaccard similarity to their neigh‐
borhoods. If we have previously performed some modeling, so that we have represen‐
tative exemplars for each class, then we only need to compare to the exemplars.
Training a machine learning model is one way to obtain these exemplars. If we
haven’t yet performed this modeling, we can still perform classification. We just
need to look at more data to discover what categories are out there and what their
characteristics are. A popular approach is k-nearest neighbors, or kNN for short.

Here is the basic workflow for kNN:

1. Compute similar scores between the query vertex and other vertices that have a1.
known class. If an item’s class is known, we say it is labeled. If there are too many
labeled vertices, we can select a random sample of them.

2. Select the k most similar vertices, where 1 < k < N.2.
3. Count the occurrences of each category among the k-nearest vertices. Pick the3.

category that occurs the most often.

For example, if among the 10 persons most similar to Kim, 7 prefer Star Trek to Star
Wars, we predict that Kim prefers Star Trek.

There is no universally ideal value of k. Values that are too small are too sensitive to
noise. Values that are too big are ignoring the importance of nearness. One heuristic
is k = N . Another is to perform the prediction for a range of values and then to pick
the most frequent prediction among the many predictions.

In Figure 6-11, the query vertex is in the center, and the distance between a vertex
and the center represents the distance (inverse similarity) between that vertex and
the query vertex. Vertices that are shaded have a known class. We have two classes:
dark and light. If k = 6, then two of those six are dark, and the other four are light.
Therefore, we predict that the class of the query vertex is light.

Using Graph Algorithms for Analytics | 143

Figure 6-11. Using kNN to classify a vertex

Link prediction can also make use of graph-based similarity. This task is usually
more complicated than node classification. First, we are dealing with two vertices (the
endpoints) instead of one. Moreover, the link might be directional. For the general
case, we hypothesize, “There is probably an edge of type L from vertex A to vertex B,
if there is usually an edge of type L from vertices similar to A to vertices similar to B.”
We can apply cosine or Jaccard similarity to our vertices, and then count how often
we see edges between pairs of similar vertices. The task is simpler if the two endpoints
are the same type of vertex: then we only need to study one type of vertex.

Different types of relationships may correlate to different types of similarity. For
example, suppose we are trying to predict a friendship relationship. Friendship is
often characterized by homophily: persons who have a lot in common tend to like
one another. Jaccard similarity might be appropriate. If homophily is an important
characteristic, we can skip the step where we look for existing examples of edges
and just make our prediction based on the two vertices being sufficiently similar.
For other types of relationships, such as knowing one another or doing business
together, two vertices belonging to the same community might be a good predictor of
eventually having a direct relationship.

Besides Jaccard and cosine, here are some ways to measure vertex similarity in the
service of link prediction:

Common neighbors
Count the number of neighbors in common. Is this number high?

Total neighbors
Count the number of neighbors in common, for neighborhoods to a depth of D
hops. Is this number high?

144 | Chapter 6: Analyzing Connections for Deeper Insight

5 Lada A. Adamic and Eytan Adar, “Friends and Neighbors on the Web,” Social Networks 25, no. 3 (July 2003):
211–230, https://doi.org/10.1016/S0378-8733(03)00009-1.

Same community
Are the two vertices already in the same community?

Using raw counts can be problematic. How much is enough? Jaccard similarity nor‐
malizes the counts by dividing the count of common neighbors by the total number
of distinct neighbors among them. Another way to normalize is to think about how
many neighbors each of the common neighbors has. Suppose A and B are both
friends with C. If C is friends with only three persons, then your two friendships
are very significant to C. If C has one thousand friends, then it’s not that significant
that they have C in common. Adamic and Adar proposed a similarity index5 that
scales the contribution of each common neighbor by the inverse log of that neighbor’s
neighborhood size. The smaller the neighborhood, the bigger the contribution to
similarity:

S(A,B) = ∑_(u ∈ N(A) ∩ N(B)) 1/(log N(u))

All of these similarity algorithms are available in TigerGraph’s GDS Library in the
Topological Similarity category.

Chapter Summary
In this chapter, we articulated a definition of graph analytics, discussed the compu‐
tational requirements for graph analytics, and did an in-depth review of graph algo‐
rithms, the toolset for graph analytics. Graph analytics is making observations and
drawing conclusions on connected data and about connected data. Graph analytics
can give you more insight into your data than would be possible or practical with
conventional tabular analytics.

Graph algorithms are handy tools for addressing standard analytical tasks. Major cat‐
egories of graph algorithms for analytics include shortest path, centrality, community,
similarity, node classification, and link prediction. As with any craft, using graph
algorithms as tools requires some study and practice to know how to make the best
use of them.

Chapter Summary | 145

https://doi.org/10.1016/S0378-8733(03)00009-1

CHAPTER 7

Better Referrals and Recommendations

This chapter will demonstrate how graph analytics can retrieve information from a
network to make better referrals and recommendations, using two real-world use
cases. In the first use case, we will build a referral network between patients and
healthcare specialists. We will see how to determine which doctors are the most influ‐
ential and how their interrelations form communities. The second use case is about
making a better recommendation engine using features based on the connections and
affinities among customers, context factors, products, and features. By the end of this
chapter, you should be able to:

• Understand how graph connections provide context•
• Apply multiple techniques for analyzing context in order to make recommenda‐•

tions and referrals
• Know how to model and analyze a referral network•
• Know how to model and analyze a recommendation engine using graphs•
• Explain the meaning of a high PageRank score using the concepts of referral and•

authority

Case 1: Improving Healthcare Referrals
Today’s healthcare industry has evolved to include many specialties and specialists.
This has advanced the state of the art in many areas and given patients the potential
to receive expert care. When a patient’s situation is beyond the routine care offered
by a general practitioner, the general practitioner may refer the patient to a specialist.
There may be subsequent referrals to other specialists. In many healthcare systems,
a patient does not have the authority to see a specialist without a referral; a formal

147

1 “Importance of Physician Referral Network in Healthcare,” JournoMed, August 18, 2020,
https://journomed.com/importance-of-physician-referral-network-in-healthcare.

referral from one doctor to another is required in order to manage healthcare costs
and efficiency.

Understanding referral behavior is important to doctors, their patients, healthcare
provider organizations, and insurance companies. Healthcare specialists who want
to grow their businesses and client bases must build and maintain a strong level
of referrals. According to market research in 2020, there is annual leaked revenue
of $900,000 per physician alone due to missed referrals.1 In this regard, medical
practitioners are similar to lawyers, physical trainers, home decorators, and many
other service providers who in part rely on referrals to build their businesses. Patients
may want to know if a referral is due to quality of care or some economic factor.
Insurers can study the referral data to see if there is a suspicious pattern that may
constitute a form of fraud. Is a provider steering referrals to another provider beyond
what is medically necessary?

To answer these questions, we need to be able to see the big picture and analyze
multiple layers of doctors making referrals to other doctors in what can be a chain of
referrals, or sometimes even a loop. The industry talks about referral networks. The
structure of these provider-patient referral networks lends itself quite well to graph
analysis.

Solution: Form and Analyze a Referral Graph
The goal of a referral network is to ensure the healthcare quality of the patient
by sending them to the correct specialty practices via their doctors. A referral net‐
work achieves this through streamlined communication among patients, doctors, and
healthcare specialists that is transparent and efficient for all stakeholders.

Understanding the dynamics in a referral network is valuable to both the individual
participants and an organization like a health insurance provider that wants to man‐
age the network as a whole. An in-depth analysis of a referral network can reveal
inefficiencies in the system. For example, a doctor might routinely refer patients
with specific symptoms to a particular specialist, not realizing that the specialist
tends to refer those patients again to another specialist. Today’s medical providers
are busy dealing with the patient issues immediately in front of them and may not
see the more holistic system-level view. A doctor or administrator who has access to
analysis of the referral network could identify these patterns and adjust their referral
protocols in light of the data.

148 | Chapter 7: Better Referrals and Recommendations

https://journomed.com/importance-of-physician-referral-network-in-healthcare

2 Actually, in this schema, each directed edge also has a corresponding reverse edge, so there are 10 edge types.

In general, there are three reasons why doctors refer their patients to other healthcare
specialists: first, to seek the advice of the specialist on the diagnosis or treatment;
second, to add the specialist to a team of healthcare providers for the patient; and
third, to transfer the patient when the original doctor is not the right fit because of
experience gaps or other personal factors. In a referral network, vertices represent
doctors, patients, and healthcare specialists. A patient’s referral by a doctor to a
healthcare specialist is represented as a directed edge. Making the right referrals at
the right time is an important part of providing good quality and efficient health
care. We can analyze the resultant directed network to identify important doctors and
specialists.

Implementing a Referral Network of Healthcare
Specialists
TigerGraph has a starter kit that models a healthcare referral network. We use
this starter kit to explore and analyze the referral network of healthcare specialists,
patients, and doctors. You can install it following the steps from Chapter 3.

The Healthcare Referral Network Starter Kit
Deploy a new TigerGraph Cloud instance, selecting “Healthcare – Referral Networks,
Hub & Community Detection” as the starter kit. After successful installation, you can
load the data following the steps listed in the section “Load data and install queries
for a starter kit” on page 50 in Chapter 3.

Graph Schema
The Healthcare Referral Network Starter Kit includes more than 11K vertices and
more than 40K edges. There are five different vertex types and five directed edge
types.2 The schema of this starter kit is shown in Figure 7-1.

Implementing a Referral Network of Healthcare Specialists | 149

Figure 7-1. Graph schema for the Healthcare - Referral Networks, Hub & Community
Detection Starter Kit (see a larger version of this figure at https://oreil.ly/gpam0701)

We describe the five vertex types in Table 7-1. A Prescriber is a doctor or nurse
practitioner who performs medical service and then submits a Claim associated with
a Patient. Each Prescriber has a Specialty and Subspecialty.

Four of the five edge types are very straightforward; the referral edge type deserves
some special attention. A Prescriber may make a referral to another Prescriber
so that the Patient can receive additional care. However, if you look at the Graph
statistics table on the Load Data page, you will see that there are zero referral edges!
The source data does not specify any referrals. One of the queries we will run will use
the data in the graph to infer referrals. Link inference, also known as link prediction,
is one of the most valuable capabilities offered by graph analytics.

Table 7-1. Vertex types in the Healthcare Referral graph model

Vertex type Description
Prescriber A medical practitioner who can make diagnoses and prescribe medicines
Claim A description of billable medical services performed by the Prescriber and associated with a Patient
Patient A person who receives medical care
Specialty A branch of medical practice focused on a category of biological systems, disorders, treatments, or patients
Subspecialty A subcategory of a Specialty

150 | Chapter 7: Better Referrals and Recommendations

https://oreil.ly/gpam0701

Queries and Analytics
The Healthcare Referral Network Starter Kit contains numerous queries. We will
focus on four queries that showcase how graph analytics techniques can provide
insights into healthcare referral network behavior. The following is a brief description
of these four queries. Then we’ll dive into more details of how each query works.

Get common patients
Given two doctors, find all patients that these doctors have in common.

Infer the referral network
The source data does not explicitly specify referrals. This analysis infers refer‐
rals by looking for situations where a Patient had a Claim submitted by one
Prescriber and then another Claim submitted by a different Prescriber within
a limited amount of time.

Find influential doctors
It’s easy to see which doctors receive the most referrals, but which doctors are
the most influential? Influence is a more subtle concept than just the number of
referrals. There are multiple ways to define influence. This analysis uses the Pag‐
eRank algorithm’s concept of influence to find the most influential Prescribers.

Find referral communities
Looking at the referral graph as a social network, what communities do we see?
That is, which Prescribers are closely affiliated with other Prescribers due to
referral relationships? This analysis looks not only at the presence of one-to-one
relationships but also at how groups of providers might be closely affiliated.

Get common patients

The query get_common_patients takes two Prescriber vertices as input parameters
and finds each Patient that has a Claim with these two doctors. For example,
Figure 7-2 illustrates the query output if we used the suggested inputs of prescribers
Douglas Thomas and Helen Su. The query not only discovers that they have five
patients in common but also shows why the patients are seeing the doctors. Note
that we are not requiring that this reflect a referral relationship. A person could be
seeing the two doctors for unrelated reasons, such as an ulcer and a broken bone.
Nevertheless, this information is helpful for several reasons. Providers can compare
the number of common patients to what they expect. They can also look at the
overall characteristics of the set of common patients. Is there anything noteworthy
or unusual about the demographics or health profiles of these common patients? Are
there indirect referrals in which there is no referral edg, but the patient would have
received better care if a direct referral had been made?

Implementing a Referral Network of Healthcare Specialists | 151

Figure 7-2. Common patients between doctors Douglas Thomas and Helen Su (see a
larger version of this figure at https://oreil.ly/gpam0702)

The get_common_patients query is implemented in six steps. The first four steps find
the common patients, and the last two steps gather the connecting vertices and edges
so that we can display the connectivity. You may find it helpful to refer to this figure
as we walk through the computation steps.

The first step is to collect all the claims associated with the first Prescriber by
traversing over the submitted_by edge type. To remember which vertices we’ve
traversed to, we mark @visited to true for each visited Claim:

 claims1 = SELECT t
 FROM Pre1:s -(<submitted_by:e)- Claim:t
 ACCUM t.@visited += true;

In our example, if Douglas Thomas is Prescriber 1, then claims1 will include vertices
c10005, c0007, c0009, c10011, and c10013. It could include more than these. Those
other vertices will get filtered out in a later stage.

152 | Chapter 7: Better Referrals and Recommendations

https://oreil.ly/gpam0702

Then, in the next step we find the linked Patient elements for each Claim. Again, we
use @visited to mark the vertices that we use. In this case, these are Patient vertices:

patients1 = SELECT t
 FROM claims1:s -(associated>:e)- Patient:t
 ACCUM t.@visited += true;

Continuing with our example of Douglas Thomas, this step would find Patient
p1003, p1004, p1005, p1006, and p1007. Again, it might find more, but these will be
filtered out later.

In the third step, we do the same as in the first step, but now we collect the Claim
elements for the second Prescriber. This would find the six claims in the lower part
of Figure 7-2:

claims2 = SELECT t
 FROM Pre2:s -(<submitted_by:e)- Claim:t
 ACCUM t.@visited += true;

In the fourth step we do the same as in the second step, but now we start traversing
from the Claim elements found in the third step, and we use a WHERE condition to
include only the Patient vertices that have been visited before. Any Patient that
has been visited already must be a patient of the first Prescriber, so we know this
Patient is a common patient. This is the filtering stage that we mentioned before:

common_patient = SELECT t
 FROM claims2:s -(associated>:e)- Patient:t
 WHERE t.@visited == true;
PRINT common_patients;s

In the fifth step, we select each Claim from common Patient elements and collect
their edges using the associated edge type. We store these edges in @@edges_to_dis
play. We will gather more edges in the last step:

claims = SELECT t
 FROM common_patients:s -(<associated:e)- Claim:t
 WHERE t.@visited == true
 ACCUM @@edges_to_display += e;
PRINT claims;

Finally, we collect all edges between the Claim elements found in the fifth step and
the two Prescriber elements. We store those edges in @@edges_to_display and print
them:

claims = SELECT s
 FROM claims:s -(submitted_by>:e)- :t
 ACCUM @@edges_to_display += e;
PRINT @@edges_to_display;

Implementing a Referral Network of Healthcare Specialists | 153

Infer the referral network

The source data does not explicitly include referral edges, so we create a query to
infer when there was a referral and then insert a referral edge into the graph. If
a patient visited Prescriber 1 at Time A and then visited Prescriber 2 a little while
later at Time B, it may be due to a referral. The query parameter max_days sets the
upper limit for the number of days between two doctor visits that will be considered a
referral. The query has a default value of 30 days.

There are a couple of reasons why this time sequence might not be due to a referral:

• Both Prescriber 1 and Prescriber 2 are treating aspects of the same condition of•
the patient, but Prescriber 1 did not make the suggestion to see Prescriber 2.

• The visit to Prescriber 2 is unrelated to the visit to Prescriber 1.•

To make these distinctions between true and false referrals would require more
information than we have in our dataset.

The query infer_all_referrals merely calls infer_referrals, once for each
Prescriber vertex. infer_referrals does the real work:

 SumAccum<INT> @@num_referrals_created;

 all_prescribers = SELECT s FROM Prescriber:s
 ACCUM
 @@num_referrals_created += infer_referrals(s, max_days);

 PRINT @@num_referrals_created;

Figure 7-3 shows an example of the graph traversal flow in the infer_referrals
query. There are four hops to get from input_prescriber D1 to another Prescriber
D2. These correspond to the four SELECT statements described in Figure 7-3.

154 | Chapter 7: Better Referrals and Recommendations

Figure 7-3. Graph traversal example for infer_referrals query

The infer_referrals query takes two input parameters: input_prescriber, a ver‐
tex of type Prescriber; and the integer value max_days. Starting from input_pre
scriber, the query selects all Claim elements related to the input prescriber by
traversing the edge type submitted_by. From there, it finds all Patient vertices that
belong to that Claim set by selecting the edge type associated. In Figure 7-3, these
two steps correspond to going from Adam (the input prescriber) to Patient Cor.

Notice that patient Cor has multiple claims from a single prescriber (Adam). The date
of a claim is a key factor in deciding whether there is a referral or not, so we need
to pay attention to each individual date. The following GSQL code snippet shows the
first two hops from input_prescriber to their patients, including collecting the dates
of each patient’s claims in a @date_list accumulator:

 Start = {input_prescriber};

 my_claims = SELECT t FROM Start:s -(<submitted_by:e)- :t
 POST-ACCUM t.@visited = true;
 my_patients = SELECT t FROM my_claims:s -(associated>:e)- :t

Implementing a Referral Network of Healthcare Specialists | 155

 // A Patient may have multiple claims; save each date
 ACCUM t.@date_list += s.rx_fill_date;

Now we want to find the claims made by other prescribers for these patients. The
clause WHERE t.@visited == false in the following code ensures that these other
claims are different from the ones we looked at before. We then compare the date of a
claim encountered in this step against the dates of claims in the Patient’s @date_list.
If the time difference is less than max_days, we mark this new claim as a referral
(earlier in the query, we converted max_days to max_seconds):

 other_claims = SELECT t FROM my_patients:s -(<associated:e)- :t
 WHERE t.@visited == false
 ACCUM
 FOREACH date IN s.@date_list DO
 CASE WHEN datetime_diff(date, t.rx_fill_date)
 BETWEEN 0 AND max_seconds THEN
 t.@is_referred_claim = true
 END
 END
 HAVING t.@is_referred_claim == true;

Next, we find the Prescriber vertices associated with the marked claims and use
an INSERT statement to create the edges. For informational purposes, we count the
number of inserted edges with the @@num_referrals_created accumulator. In GSQL,
graph updates are not committed until the end of the query. Therefore, it would not
work to count the number of referral edges within this query directly. We could
only perform such a count in a subsequent query:

 other_prescribers = SELECT t FROM other_claims:s -(submitted_by>:e)- :t
 POST-ACCUM
 INSERT INTO referral VALUES(input_prescriber, t, 1),
 @@num_referrals_created += 1;

Lastly, we RETURN @@num_referrals_created, sending data back to the query that
called this one. The caller query (infer_all_referrals) adds together each returned
value for each Prescriber to compute the total number of edges created for the
entire graph.

Subqueries in GSQL

A query can be defined as a subquery by using RETURNS

(<data_type>) in the header and RETURN <value> at the end of
the query. Besides returning a value, a subquery can have graph
modification side effects (e.g., inserting edges). PRINT statements in
subqueries do not print to the console; an alternative is to write
to a file with PRINTLN or LOG. See TigerGraph’s GSQL Language
Reference for more details.

156 | Chapter 7: Better Referrals and Recommendations

https://oreil.ly/Q7U-D
https://oreil.ly/Q7U-D

Find influential doctors
This query finds the most influential specialists. An influential specialist is considered
an authority. They not only receive a lot of referrals but also work on the important
cases. If they were to drop out of the graph suddenly, the impact would be significant.
Analysis of relative influence can help doctors understand their relative importance
and see if they can improve it. Healthcare administrators can take a holistic look to
see if they can reduce overdependence on individuals and provide more balanced
care to patients while reducing costs. Epidemiologists, pharmaceutical companies,
and medical equipment vendors may also want to know which doctors are the most
influential.

Fortunately for us, a well-known graph algorithm measures influence in this way,
considering both the number and relative importance of incoming edges. The Pag‐
eRank algorithm, developed by Google founders Larry Page and Sergey Brin, ranks a
web page based on how many other pages are linking it and the rank of these other
pages. We can look at the influence of doctors in a referral network in a similar way.
A doctor’s influence increases if they receive more referrals or if the influence of those
referrers increases.

An implementation of the PageRank algorithm (tg_pagerank) is included in Tiger‐
Graph’s GDS Library. The algorithm is included in this starter kit for convenience,
but installing library algorithms into your database instance is a simple process.
Unlike other GSQL algorithms we have seen that were written for a specific graph
schema in a specific starter kit, this algorithm is general purpose. It has 10 input
parameters (shown in Table 7-2), but 8 of them have default values. We only need to
set the first 2. In our case, we set v_type = Prescriber and e_type = referral.

Inside GraphStudio, the GSQL GDS Library is available in the
New Query window. With a graph selected, choose “Write Queries”
in the left sidebar, then click the green ⨁ button to add a new
query to the list of installed and saved queries. Click “Choose from
library” in the new window that appears. Hover over the question
mark icon next to any query for a brief explanation of its purpose.

Table 7-2. Input parameters for tg_pagerank library algorithm

Parameter Default
value

Description

v_type Name of vertex type to use.

e_type Name of edge type to use.

max_change 0.001 Stop iterating when the interim PageRank scores are stable, changing less than 0.001.

max_iter 25 Stop iterating if we have computed interim PageRank scores this many times.

damping 0.85 Relative importance of neighbors versus random movement (between unconnected
vertices). Some random movement is needed for stability.

Implementing a Referral Network of Healthcare Specialists | 157

Parameter Default
value

Description

top_k 100 Number of top scores to print in the output.

print_accum TRUE Print the output in JSON format.

result_attr FALSE Store the results as vertex attributes.

file_path empty string Write the results in tabular format to this file.

display_edges FALSE Include edges of interest in the output. If the algorithm is run on GraphStudio, selecting
this option causes a better visual display.

The next three parameters after e_type are specific to PageRank. The last five param‐
eters are general purpose and appear in many or most GSQL algorithms in the GDS
Library. They deal with the way the query output is printed to the console and/or
exported to a file. result_attr is a way to store the PageRank results in the graph
as a vertex attribute so that later queries can make use of this algorithm’s results in
their own calculations. The display_edges parameter specifies whether the output
should include edges that are helpful to visualize the results. For example, if the
get_common_patients query were to add this parameter, it would specify whether
steps 5 and 6 should execute.

If you run PageRank with parameter settings v_type = Prescriber, e_type = refer
ral, and top_k = 5, you should get the following output:

[{
 "@@top_scores_heap": [
 {"Vertex_ID": "pre16", "score": 2.72331},
 {"Vertex_ID": "pre61", "score": 2.5498},
 {"Vertex_ID": "pre58","score": 2.20136},
 {"Vertex_ID": "pre52","score": 2.08101},
 {"Vertex_ID": "pre69","score": 1.89883}
]
 }]

Find a referral community
This query detects communities within a referral network. A community is a set of
vertices that are highly connected to one another while having sparse relationships
with the rest of the graph. In a referral network, communities arise through dense
connections among doctors, patients, and healthcare providers when they interact
with one another. They form a group together because of their many interactions
with one another. Detecting communities can help doctors to identify the spread
of their referrals within a network and make better referrals for their patients.
Healthcare managers can investigate the communities to evaluate the local healthcare
systems.

A widely popular graph algorithm to detect communities is the Louvain algorithm,
which we mentioned in Chapter 6. This algorithm, developed by Vincent Blondel

158 | Chapter 7: Better Referrals and Recommendations

3 No known algorithm is guaranteed to find the most optimal solution without expending compute resources
that grow exponentially with the data size. Louvain efficiently finds a “good” answer in a time-efficient way.

of the University of Louvain, chooses graph communities by trying to optimize3 the
relative density of edges inside a community, known as modules, versus the edges out‐
side the modules. A key feature of the Louvain method is that it does not have a fixed
number of communities to detect as an input parameter, making it advantageous for
practical applications like those where the number of communities to detect is not
known at the outset. It starts with detecting small modules and then groups them
together into larger modules whenever that improves the modularity score.

The Louvain algorithm (tg_louvain) is included in the Healthcare – Referral Net‐
works, Hub & Community Detection Starter Kit. It has eight input parameters
(shown in Table 7-3). The vertex type (Prescriber) and edge type (referral, in
both forward and reverse directions) have been hardcoded into the query. There is no
need to adjust any of the parameters, though you might experiment with increasing
the output_level.

Table 7-3. Input parameters for tg_louvain library algorithm

Parameter Default
value

Description

iter1 10 Maximum iterations for move.

iter2 10 Maximum iterations for merge.

iter3 10 Maximum iterations for refine.

split 10 Number of data batches, to reduce peak memory consumption. split=1 processes the
whole graph at once. split=10 processes the graph in 10 batches.

output_level 0 If 0: JSON output is statistics about communities.
If 1: also output the community IDs indexed by cluster size.
If 2: also output the membership of each community.

print_accum TRUE Print the output in JSON format.

result_attr FALSE Store the results as vertex attributes.

file_path empty string Write the results in tabular format to this file.

Run the query with default settings. With more than 11,000 vertices, it is difficult to
visualize the results, so we will examine the JSON output. The first three sections of
the JSON output are shown belows. The first section tells us that the algorithm grou‐
ped the vertices into 17 communities. The second section says the largest community
has 11,055 members. The next largest community has only 10 members. The third
section says that the community with id = 0 is the one with 11,055 members, com‐
munity 68157440 has 6 members, and so on. Because this is a heuristic algorithm,
you might get slightly different community sizes and qualities. The community IDs
may certainly differ:

Implementing a Referral Network of Healthcare Specialists | 159

[
 {"num_of_clusters": 17},
 {"@@largest_clusters": [
 {"csize": 11055,"number": 1},
 {"csize": 10,"number": 1},
 {"csize": 9,"number": 1},
 {"csize": 8,"number": 4},
 {"csize": 7,"number": 3},
 {"csize": 6,"number": 2},
 {"csize": 4,"number": 4},
 {"csize": 3,"number": 1}
]
 },
 {
 "@@cluster_sizes": {
 "0": 11055,
 "68157440": 6,
 "68157441": 8,
 "71303168": 9,
 "71303169": 10,
 "71303170": 8,
 "72351746": 3,
 "72351747": 7,
 "73400320": 8,
 "75497473": 4,
 "77594625": 6,
 "77594628": 8,
 "79691776": 4,
 "81788928": 4,
 "84934657": 7,
 "84934658": 4,
 "88080385": 7
 }
]

Case 2: Personalized Recommendations
Consumers today often have too many choices. They have trouble knowing what is
available and reaching a decision, and vendors have trouble making sure that they are
noticed and meeting the consumers’ needs. Recommendation engines have become
increasingly crucial for guiding users through this jungle of offerings. Recommen‐
dation engines aim to prevent users from information overload and provide them
with more personalized information, making the solution’s user experience more
efficient. An online retailer like Amazon may have hundreds of thousands of separate
products in the same category. Online retailers offering many products benefit from
a recommendation engine because it helps shoppers find products of interest more
quickly and easily. Repeat business also comes from customers who are satisfied with
a personalized experience that other retailers do not offer.

160 | Chapter 7: Better Referrals and Recommendations

Traditional recommendation engines provide suggestions of products, content, or
services to users based on their historical behavior and the behavior of similar users.
There are a few problems with this approach, however. First, new users do not have
a history yet, so we cannot make correct suggestions to them at the beginning. This
is known as the cold start problem. Second, when only looking into the user’s
historical behavior, we are limited to suggesting the same type of content repeatedly.
The user might miss out on other products, content, and services the vendor offers.
Finally, making highly personalized recommendations is not easily scalable, because
as the user base and the level of detail grow, the number of persons, products, and
factors to consider will grow as well, requiring exponentially more comparisons over
time.

To combat these issues, we need a recommendation engine that maintains and
processes up-to-date information in near real time. It must also not rely on batch
processing. Another requirement is to be fast and scalable to millions of users and
products.

Solution: Use Graph for Multirelationship-Based
Recommendations
Making recommendations to users of an application is, in essence, discovering con‐
nections or similarities. Purchasing a product is a connection between a consumer
and a product, and there are also connections among a consumer, a product, and
their respective features. If two persons have similar tastes, that similarity is a type
of connection, and products that are often purchased together likewise share a
connection. These connections arise once users interact with the application, and
recommendation is a form of analyzing these connections. Collectively, these connec‐
tions form a graph. By modeling the data as a graph, we can query right on the
graph-structured data without making large join operations on batch data. Therefore,
a graph is a natural and flexible way to represent these connections. Organizing the
relationships in such a way makes adding, modifying, and removing data easy and the
application highly scalable.

Another benefit of using graphs for a recommendation engine is to prevent a cold
start for the user. Because a graph model is a single interconnected system, we can
populate the starting user experience with a mix of recommendation techniques:
content associated with the new user’s demographic information; content-based,
collaborative filtering; and vendor promotion. In a graph, these techniques can
be implemented using pattern matching and similarity scoring. Moreover, adding
more data, adding more relationships, and revising the recommendation scheme is
straightforward.

Solution: Use Graph for Multirelationship-Based Recommendations | 161

Implementing a Multirelationship Recommendation
Engine
TigerGraph offers a starter kit to demonstrate how graph analytics can derive cus‐
tomer product recommendations. The starter kit can be installed by following the
steps in Chapter 3.

The Recommendation Engine 2.0 Starter Kit
Deploy a new TigerGraph Cloud instance, selecting “Recommendation Engine 2.0
(Hyper-Personalized Marketing)” as the starter kit. Launch it and load the data
following the steps in the section “Load data and install queries for a starter kit” on
page 50 in Chapter 3.

Graph Schema
Figure 7-4 shows the graph schema of this starter kit, which contains six vertex types
and seven edge types.

Figure 7-4. Graph schema for the Recommendation Engine 2.0 (see a larger version of
this figure at https://oreil.ly/gpam0704)

162 | Chapter 7: Better Referrals and Recommendations

https://oreil.ly/gpam0704

Table 7-4 describes the vertex types. A Demographic vertex refers to the demographic
properties of a Customer. A Customer is a natural person who has an account in
our web shop. Furthermore, each Customer has a History of buying a Product. A
Feature can be a characteristic of a Demographic, Customer, or a Product vertex.
With Context, we add a contextual layer to our queries with time constraints or
weather conditions.

Table 7-4. Vertex types in the Recommendation Engine 2.0 graph model

Vertex type Description
Customer A natural person
Demographic A demographic property of a Customer

History A buying history of a Customer

Product A product
Feature A feature of a Customer

Context A contextual constraint

In our simplified example, each Context vertex has an ID value, which is a word or
phrase that describes its characteristic. In a real-world example, the schema would
probably categorize the data into different types of context, such as location, date,
weather, and so on, but we have lumped them all together into one attribute.

Some of the edge types have weight attributes. The product_feature edge type has
an attribute simply called weight. A high weight means that feature is an important
aspect of that product. The customer_feature edge type has an attribute called
affinity. A high affinity means there is a strong association between that feature
and the customer’s desires. We can use these weights to compute how strongly a
customer will prefer a product, that is, to make a feature-based recommendation.
A standard approach is to multiply the product_feature weight by the customer_
feature affinity.

The graph in this starter kit is intentionally very small to make it easy to follow the
calculations. The entire graph is shown in Figure 7-5. From top to bottom, the vertex
types are Customer, Demographic, Feature, Product, and Context.

Implementing a Multirelationship Recommendation Engine | 163

Figure 7-5. Recommendation graph (see a larger version of this figure at https://oreil.ly/
gpam0705)

Queries and Analytics
The Recommendation Engine 2.0 Starter Kit includes three queries that show how
recommendation engines can be improved using graph analytics. They allow us to
select top-ranked products while considering the Context and Feature elements of
the Customer.

Recommend by features and context
Return the top_k products for source_customer while taking into account
weather and time_of_day.

Recommend products by customer and context
Recommend the highest-rated product for a customer while taking into account
the weather and the time of the day.

Get top demographic
Display the demographic with the highest average affinity among its customers
and features related to the demographic.

Recommend by features and context

Given a set of context conditions and a customer, the recommend_by_features_
and_context query returns the products that satisfy the context conditions and have

164 | Chapter 7: Better Referrals and Recommendations

https://oreil.ly/gpam0705
https://oreil.ly/gpam0705

the strongest match between their features and the features preferred by the custom‐
ers. This query takes four input parameters. The first parameter, source_customer,
names the Customer whose top-rated products we would like to know. Then with
weather and time_of_day we specify the Context of our selection, and with top_k we
set how many top-rated products we want to return.

The query begins by initializing the vertex set start to source_customer. Next, we
count how many context filters the user wants to apply. If the user does not want
to filter by an input factor (time_of_day or weather), then the user should just
leave that input parameter blank. The following code counts the number of activated
context filters:

IF time_of_day != "" THEN min_filters = min_filters + 1; END;
IF weather != "" THEN min_filters = min_filters + 1; END;

Next, we find those products that satisfy our context filters. We start by initializing
candidate_products to be all products and filtered_context to be all contexts.
Then, if min_filters is not zero, it means that the Context has been set, so we
execute our first SELECT statement to narrow down filtered_context to only the
elements that match time_of_day or weather:

 IF min_filters != 0 THEN
 filtered_context = SELECT c FROM Context:c
 WHERE c.id == weather OR c.id == time_of_day; // filter for context

We use another SELECT statement to refine candidate_products down to only those
that link to all of our filtered_context:

 candidate_products = SELECT p
 FROM filtered_context:c -(product_context:pc)- Product:p
 ACCUM p.@filters += 1 // count # matching filter properties
 HAVING p.@filters >= min_filters; // must match all context filters

The ACCUM clause counts how many context matches each product makes. The HAVING
clause filters the final selection to only include products that match on all the speci‐
fied context parameters. Referring to Figure 7-5, if we set parameters weather = "BW"
and time_of_day = "T2", then candidate_products will be {P004}, the only product
that connects to both filtered_context vertices.

Now we can compute the overall recommendation score between the customer
and products. We use a two-hop path to find connections between our given Cus
tomer and the candidate Product vertices, with Feature serving as an intermediary.
For each selected product that connects to a feature of interest, we multiply the
product_feature weight by customer_feature affinity and add that to the accumu‐
lator @max_score.

Adding the contributions of all the relevant features to compute a total score would
be a valid approach, but that is not what we are actually doing here. @max_score

Implementing a Multirelationship Recommendation Engine | 165

4 You could easily modify the scoring scheme by changing this accumulator type from a MaxAccum to a
SumAccum (total affinity) or AvgAccum (average affinity).

is defined as a MaxAccum, so it preserves the highest value that it is given. In other
words, we look for the single most important feature and use only that one for
scoring.4 Then we use @max_score along with the SQL-like ORDER BY and LIMIT
clauses to select the top_k products with the highest recommendation scores:

 recomm_products = SELECT p
 FROM start:s -(customer_feature:cf)- Feature:f
 -(product_feature:pf)- candidate_products:p
 ACCUM p.@max_score += pf.weight*cf.affinity // compute score
 ORDER BY p.@max_score DESC
 LIMIT top_k;

Suppose we set weather = "GW" and time_of_day = "T2". Then candidate_products
will be {P004, P002}, as highlighted in Figure 7-6. (Since "GW" connects to every
product, it has no filtering effect.) If source_customer = C002, there is only one
Customer-Feature-Product path to candidate_products, with weight 23.

Figure 7-6. Graph paths for recommendation by features and context (see a larger
version of this figure at https://oreil.ly/gpam0706)

To see the scores, switch to the JSON output. Now suppose we set source_customer
= C001, weather = GW, time_of_day = T2, and top_k = 2. Think about what

166 | Chapter 7: Better Referrals and Recommendations

https://oreil.ly/gpam0706

paths you can see from C001 to GW and T2 in Figure 7-6 that lead to the following
recommendation scores:

 {
 "attributes": {
 "@max_score": 12,
 },
 "v_id": "P004",
 "v_type": "Product"
 },
 {
 "attributes": {
 "@max_score": -3,
 },
 "v_id": "P002",
 "v_type": "Product"
 }

Recommend products by customer and context
Given a set of context conditions and a set of customers, this query returns the
product that satisfies the context conditions and that has the strongest match between
its features and the features preferred by the customers. The basic task of this query
is very similar to that of our first query, recommend by features and context, but
there are some interesting differences. The first difference is that this query accepts
a list of any context values (input_context_set) rather than asking for one weather
condition and one time condition. The second difference is that it can process mul‐
tiple input customers (input_customer_set) instead of a single one. Both of these
changes make it more universal. A third difference is that it returns only one product.
That is because this query shows a visual representation of all the connections to
Customer and Context vertices that led to the recommendation. If it selected the top
k products, then the visual representation would not be as easy to interpret.

The query starts by defining a tuple type and several accumulators. The first four def‐
initions are to help with sorting products by their average affinity to the customers. A
HeapAccum will automatically sort the tuples given to it. After we have our HeapAccum,
we will need to convert it to a vertex set for further processing:

 TYPEDEF TUPLE<VERTEX<product> v, DOUBLE avg_score> Product_Score_Tuple;
 AvgAccum @product_avg_score;
 HeapAccum<Product_Score_Tuple>(1, avg_score DESC) @@top_product_heap;
 SetAccum<VERTEX<product>> @@top_product_vertex_set;

A heap is a more scalable way to get the top k elements from a
very large list because the heap has a fixed and usually small size.
While ORDER BY and LIMIT are syntactically simpler, they will build
a temporary table of all the elements to be sorted.

Implementing a Multirelationship Recommendation Engine | 167

The last seven accumulators are simply to collect the vertices and edges to display.
While we choose to have separate containers for each type, you could merge them
into just one vertex set and one edge set:

 SetAccum<VERTEX<customer>> @@final_customer_vertex_set;
 SetAccum<VERTEX<feature>> @@final_feature_vertex_set;
 SetAccum<VERTEX<product>> @@final_product_vertex_set;
 SetAccum<VERTEX<context>> @@final_context_vertex_set;
 SetAccum<EDGE> @@final_context_feature_edge_set;
 SetAccum<EDGE> @@final_product_feature_edge_set;
 SetAccum<EDGE> @@final_product_context_edge_set;

We start with selecting all the Product vertices that share a Feature with a Customer
vertex in customer_vertex_set and that also link to one of the input Context verti‐
ces in context_vertex_set. In a graph query language like GSQL, you perform this
selection by searching for paths that make these connections. Figure 7-7 shows the
graph schema previously seen in Figure 7-4, with the search path and the specified
vertex sets highlighted.

Figure 7-7. Graph path to select products that have features valued by certain customers
and that satisfy certain context constraints (see a larger version of this figure at https://
oreil.ly/gpam0707)

There are two syntax options to describe this path in GSQL: as three one-hop paths
separated by commas or as one multihop path. While the multihop path is usually
more elegant, the separate paths can give you more control over how the query is

168 | Chapter 7: Better Referrals and Recommendations

https://oreil.ly/gpam0707
https://oreil.ly/gpam0707

executed, if performance tuning is required. Note how the multihop FROM clause
corresponds exactly to the highlighted path in the figure:

 product_vertex_set = SELECT p
 FROM customer_vertex_set:c -(customer_feature:cf)- feature:f
 -(product_feature:pf)- product:p
 -(product_context:pctx)- context_vertex_set:ctx

Each Customer-Feature-Product path has a score: cf.affinity * pf.weight. We
compute all the path scores and accumulate them in AvgAccum accumulators (@prod
uct_avg_score) to get an average score for each product. We then insert each prod‐
uct with its score into a HeapAccum (@@order_product_heap), which sorts them. Since
we set the size of our heap to 1, we end with the single highest-scoring product:

 ACCUM p.@product_avg_score += (cf.affinity * pf.weight)
 POST-ACCUM
 @@order_product_heap += Order_Product_Tuple(p, p.@product_avg_score);

In one SELECT statement, we have performed our recommendation analysis.

The purpose of the final SELECT statement is to visualize the elements that we want
to display in a graph. We traverse the same paths that we did before, using an almost
identical FROM clause, with one change: we include only our top product instead of all
products. We add all elements from the vertex types we’ve visited in the @@final_cus
tomer_vertex_set, @@final_feature_vertex_set, @@final_product_vertex_set,
and @@final_context_vertex_set accumulators, and then print those accumulators:

 product_vertex_set = SELECT p
 FROM customer_vertex_set:c -(customer_feature:cf)- Feature:f
 -(product_feature:pf)- product_vertex_set:p
 -(product_context:pctx)- context_vertex_set:ctx
 ACCUM @@final_context_feature_edge_set += cf,
 @@final_product_feature_edge_set += pf,
 @@final_product_context_edge_set += pctx
 POST-ACCUM @@final_customer_vertex_set += c
 POST-ACCUM @@final_feature_vertex_set += f
 POST-ACCUM @@final_product_vertex_set += p
 POST-ACCUM @@final_context_vertex_set += ctx;

Figure 7-8 shows the output when the input customers are C002 and C003 and the
input contexts are BW (bad weather) and T3 (lunch). The weights that determined this
selection are shown.

Implementing a Multirelationship Recommendation Engine | 169

Figure 7-8. Example query result for recomm_by_customer_and_context (see a larger
version of this figure at https://oreil.ly/gpam0708)

Get top demographics

The query called display_top_demographic finds the Demographic element that has
the highest average affinity score among its members and displays the Customer
and Feature elements that are connected to this Demographic. The intuition here
is that a Demographic with high affinity should have members that are similar to
one another, and therefore you should be able to make better predictions about
their preferences. The structure of this query is very similar to that of recommend
products by customer and context. We score each Demographic element according
to its average feature-based affinity to its connected Customer elements. This tells us
if we have a Demographic group that is strongly bound versus a group that is only
loosely bound.

Unlike the previous query, this one does not have input parameters since it is calcu‐
lating the top Demographic of the entire dataset without any given Context. We start
with defining a tuple type and accumulators to score and sort Demographic vertices:

TYPEDEF TUPLE<VERTEX<demographic> v, DOUBLE score> Top_Demographic_Tuple;
AvgAccum @demographic_avg_score;
HeapAccum<Demographic_Score_Tuple>(1, score DESC) @@top_product_heap;
SetAccum<VERTEX<Demographic>> @@top_demographic_vertex_set;

We also define six accumulators to collect the vertices and edges to display.

We use SELECT – FROM to find the paths that connect Demographic to Customer via
Feature. Figure 7-9 illustrates this selection.

170 | Chapter 7: Better Referrals and Recommendations

https://oreil.ly/gpam0708

Figure 7-9. Graph paths that connect Demographic to Customer via Feature. After
finding the paths, we score them by multiplying their edge weights. (See a larger version
of this figure at https://oreil.ly/gpam0709.)

Then we use an ACCUM statement to calculate the average demographic score for
each element in Demographic by multiplying the attributes of cf.affinity with
df.affinity and adding that score in @@demographic_avg_score. We create a
Top_Demographic_Tuple for each Demographic and add that to @@top_product_heap:

 demographic_vertex_set = SELECT d
 FROM Demographic:d -(demo_feature:df)- Feature:f
 -(customer_feature:cf)- Customer:c
 // Score each demographic by its avg affinity to customers
 ACCUM d.@demographic_avg_score += (cf.affinity * df.affinity)
 // Pick the top scoring demographic
 POST-ACCUM @@top_product_heap += Demographic_Score_Tuple(
 d, d.@demographic_avg_score);

A few lines are needed to convert the heap to a simple vertex set:

 WHILE (@@top_product_heap.size() > 0) DO
 @@top_demographic_vertex_set += @@top_product_heap.pop().v;
 END;
 demographic_vertex_set = { @@top_demographic_vertex_set }; // top product

The goal of the second SELECT statement is to display the found top Demographic
and its connected Customer and Feature elements. We would like to also display
the edges directly connecting Customer to Demographic, so the path traversal in
the FROM clause is a bit longer this time. During these traversals, we store all the
edges in @@final_demo_customer_edge_set, @@final_demo_feature_edge_set, and
@@final_context_feature_edge_set using accumulators. With POST-ACCUM we store

Implementing a Multirelationship Recommendation Engine | 171

https://oreil.ly/gpam0709

all the visited vertices @@final_demographic_vertex_set, @@final_customer_ver
tex_set, and @@final_feature_vertex_set. Finally, we use these variables to display
the graph:

 demographic_vertex_set = SELECT d
 FROM demographic_vertex_set:d -(demo_customer:dc)- customer:c,
 demographic_vertex_set:d -(demo_feature:df)- feature:f,
 customer:c -(customer_feature:cf)- feature:f
 ACCUM @@final_demo_customer_edge_set += dc,
 @@final_demo_feature_edge_set += df,
 @@final_context_feature_edge_set += cf
 POST-ACCUM @@final_demographic_vertex_set += d
 POST-ACCUM @@final_customer_vertex_set += c
 POST-ACCUM @@final_feature_vertex_set += f;

Figure 7-10 shows the result of running display_top_demographic. The Old_Cruis
ers demographic is selected because of the average weight of the affinity paths to all
connected Customer elements. Because of the very small size of this sample dataset,
there is only one connected Customer.

Figure 7-10. Output of the display_top_demographic query (see a larger version of
this figure at https://oreil.ly/gpam0710)

Chapter Summary
In this chapter, we have looked into graph techniques to identify important vertices in
a network. With a real-world use case, we have defined a referral network of doctors,
patients, and specialists to demonstrate how analyzing its structure can help doctors
make the proper referrals more efficiently.

172 | Chapter 7: Better Referrals and Recommendations

https://oreil.ly/gpam0710

We have also demonstrated how we can use a network of contextual information to
improve customer recommendations. Our proposed solution includes a network of
customers, demographics, features, and products. We have seen that analyzing the
connections between these entities makes the recommendation more natural and
scalable. This approach also helps us to avoid the cold start problem, which we often
encounter using traditional database data structures.

In the next chapter, we will demonstrate the use of graph analytics in the field of
cybersecurity. We will show how we can detect and mitigate cyberattacks against
firewalls and block devices used in DDoS attacks.

Chapter Summary | 173

1 Ponemon Institute, 2019 Global State of Cybersecurity in Small and Medium-Sized Businesses, 2019, https://
www.cisco.com/c/dam/en/us/products/collateral/security/ponemon-report-smb.pdf.

CHAPTER 8

Strengthening Cybersecurity

In this chapter, we will describe how graphs can strengthen a cybersecurity system.
We will demonstrate how graph analytics can identify root causes of a reported alert,
detect bypassing of a firewall, and discover anomalous behavior such as flooding and
footprinting. We will also show how graphs can find connections to suspicious IP
addresses that may be responsible for attacks. After finishing this chapter, you should
be able to:

• Understand how to apply graph concepts within the cybersecurity space•
• Build graph queries to trace microservices•
• Build graph queries to detect statistical anomalies•

The Cost of Cyberattacks
We rely on technology constantly challenged by cyberattacks that aim to damage,
disrupt, or maliciously control our IT infrastructure or our sensitive data. According
to a Ponemon Institute survey in 2019, 66% of small to medium enterprises had expe‐
rienced a cyberattack within the past 12 months.1 These cyberattacks have become
a daily threat to the functioning of our society. For example, leading up to the US
presidential election of 2016, Russian hackers coordinated attacks on members of
the Democratic Party to steer the election’s outcome. According to the US National
Security Agency (NSA), email accounts of more than 300 people affiliated with
Hillary Clinton’s campaign as well as those of other Democratic Party organizations
were attacked.2 These attacks led to information leaks that sought to harm Clinton’s

175

https://www.cisco.com/c/dam/en/us/products/collateral/security/ponemon-report-smb.pdf
https://www.cisco.com/c/dam/en/us/products/collateral/security/ponemon-report-smb.pdf

2 Mark Mazzetti and Katie Benner, “12 Russian Agents Indicted in Mueller Investigation,” New York Times, July
13, 2018, https://www.nytimes.com/2018/07/13/us/politics/mueller-indictment-russian-intelligence-hacking.html.

3 IBM Security, “Cost of a Data Breach Report 2020,” 2020, https://www.ibm.com/downloads/cas/QMXVZX6R.
4 Acronis, Acronis Cyber Protection Operation Center Report: Cyberthreats in the Second Half of 2022 –

Data Under Attack, 2022, https://dl.acronis.com/u/rc/White-Paper-Acronis-Cyber-Protect-Cloud-Cyberthreats-
Report-Year-End-2022-EN-US-221212.pdf.

5 “CAPEC List Version 3.9,” CAPEC, last updated October 21, 2021, https://capec.mitre.org/data/index.html.

election campaign. In a more recent example, from February 2022, a hacker group
executed a large-scale cyberattack on NVIDIA, one of the world’s largest semicon‐
ductor chip companies. The attackers leaked credentials and employee information
online. The perpetrators claimed they had access to more than one terabyte of com‐
pany data, which they would release if NVIDIA did not meet their ransom demands.

Cyberattacks can damage governmental and commercial organizations as well as
individuals, leading to political disruptions and financial implications. According to
research into the costs of data breaches conducted by the Ponemon Institute and
IBM, the average cost of a single data breach is $3.86 million globally. The US tops
this chart with an average cost of $8.64 million for a single breach. A key challenge to
minimizing these damages is identifying the breach as soon as possible. Researchers
claim that organizations can save $1.12 million when a breach is detected within less
than 200 days. However, they also suggest that the time to detect and contain a data
breach is still, on average, up to 315 days for a malicious breach.3 The average cost of
a data breach is expected to be $5 million in 2023.4

Understanding how attackers operate is essential to building effective cybersecurity
systems. The Common Attack Pattern Enumerations and Classifications (CAPEC)5

initiative provides a standard set of categories and descriptions of cyberattack pat‐
terns that analysts, developers, and IT architects can use to enhance defenses. CAPEC
divides these attack patterns into nine categories. For example, Abuse Existing Func‐
tionality is an attack pattern where the adversary manipulates the functionality of
an application to achieve a malicious output not originally intended or depletes a
resource to influence functionality. Collect and Analyze Information attack patterns
focus on gathering, collecting, and stealing information. Methods used in this cate‐
gory include active querying and passive observation. The example case from the
2016 US presidential election falls under this category. Inject Unexpected Items
includes attack patterns that focus on the ability to control or disrupt the behavior of
an application. These attack patterns install and execute malicious code by exploiting
an input on the target application.

176 | Chapter 8: Strengthening Cybersecurity

https://www.nytimes.com/2018/07/13/us/politics/mueller-indictment-russian-intelligence-hacking.html
https://www.ibm.com/downloads/cas/QMXVZX6R
https://dl.acronis.com/u/rc/White-Paper-Acronis-Cyber-Protect-Cloud-Cyberthreats-Report-Year-End-2022-EN-US-221212.pdf
https://dl.acronis.com/u/rc/White-Paper-Acronis-Cyber-Protect-Cloud-Cyberthreats-Report-Year-End-2022-EN-US-221212.pdf
https://capec.mitre.org/data/index.html

6 “What Is Cybersecurity?” Cybersecurity & Infrastructure Security Agency, February 1, 2021, https://
www.cisa.gov/news-events/news/what-cybersecurity.

Problem
A key challenge is monitoring the information flow so that vulnerabilities are visible
and attacks are reported quickly. Suppose a microservice triggers another microser‐
vice that raises an alert. In that case, the system must be able to support deep-link
analytics to trace the root cause or pattern matching for detecting anomalous behav‐
ior. With the growing volume of data stored, processed, and modified, it becomes
more difficult to efficiently manage and extract relevant information from the data in
real time.

The information above reveals that cybersecurity attack detection:

• Must process a large volume of data•
• Must identify threats and trigger alerts as fast as possible•
• Must assist in finding the original point of failure•
• Is an urgent and growing business need remaining unmet at many enterprises•

Solution
Cybersecurity aims to ensure confidentiality, integrity, and availability of information
and to protect networks, devices, and data from unauthorized access or criminal use.6

Graphs are a natural fit for modeling digital systems and detecting attacks because the
internet itself, with its infrastructure and devices, is an interconnected network. It is
the medium through which cyberattacks are made. An attack pattern can be analyzed
as a chain of events, or a path within the graph consisting of individual processes. A
process can be an object or interaction between different objects, depending on what
we want to model.

Often, a large number of attacks are the work of relatively few perpetrators. This is
the case with DDoS attacks. In a graph model, this translates to a hub structure. A
graph-based cybersecurity system can seek out and analyze unexpected hubs.

We must consider four aspects when building a cyberattack defense system based on
graphs. First, the data that we collect in our organization is a network in itself, but we
must model its processes, assets, and operations as a unified real-time graph. Second,
we must monitor key operations and vulnerable places in our graph. Therefore, we
can use known attack patterns to express those within our graph and build our
defense around them. Third, the graph can assist us when an actual attack occurs. It
can help to identify where the attack takes place in the graph and trace both upstream
to the source and downstream to the effects. Lastly, we collect historical data from

Solution | 177

https://www.cisa.gov/news-events/news/what-cybersecurity
https://www.cisa.gov/news-events/news/what-cybersecurity

our organization and merge it with data from a third party, such as an anonymized
dataset from McAfee or Norton, and feed that into machine learning models to
predict future attacks.

A cybersecurity system must be able to integrate multiple data sources and process
them in real time. For example, we need to integrate service information to know
which microservice is called throughout our operations or server information to
know where our applications are deployed and see the status of our virtual machines.
Another common data source to include is user information regarding permission
and authorizations. Graphs can integrate these many data types into a single view,
where services, databases, and users are linked with an interconnected cybersecurity
solution.

Implementing a Cybersecurity Graph
Using one of TigerGraph Cloud’s starter kits, we will show how to implement a
cyberattack detection system.

The Cybersecurity Threat Detection Starter Kit
Using TigerGraph Cloud, deploy a new cloud instance and select “Cybersecurity
Threat Detection” as the starter kit. Once this starter kit is installed, load the data
following the steps listed in the section “Load data and install queries for a starter kit”
on page 50 in Chapter 3.

Graph Schema
The Cybersecurity Threat Detection Starter Kit schema has nine vertex types, with
Event as the central vertex type. In total there are 1,325 vertices and 2,692 edges. The
schema of this starter kit is shown in Figure 8-1.

178 | Chapter 8: Strengthening Cybersecurity

Figure 8-1. Graph Schema for the Cybersecurity Threat Detection Starter Kit (see a
larger version of this figure at https://oreil.ly/gpam0801)

There are six types of events: authentication, firewall, login, request, read, and write.
If an event is caused by a person or network device, it may be associated with a
UserID, Device, or IP address. The Event may be an action that involves a Service,
Servers, or a Resource. A Service or Servers can report an Alert, which has an
Alert_Type. These vertex types are described in Table 8-1.

Table 8-1. Vertex types in the Cybersecurity Threat Detection graph model

Vertex type Description
Event An event triggered by an action in the system
IP An IP address involved in an Event
UserID A user ID referring to a user involved in an Event
Service A microservice that performs the action of an Event
Alert An alert triggered by a Service on a Server
Alert_Type The alert type of an Alert
Server A server on which an Event occurs
Resource A resource used in an Event
Device A device used in an Event

Implementing a Cybersecurity Graph | 179

https://oreil.ly/gpam0801

An Event can be associated with a Device, IP, or UserID. The associations are repre‐
sented by the edge types From_Device, Has_ip, and user_event, respectively. We use
two edge directions to indicate the relationships between Event and Services. If we
want to know which Services belong to an Event, we use To_Service, or if we want
to know the Event that belongs to the Service, we use From_Service. Similarly, we
can find the Server elements that belong to the Event and vice versa, respectively,
with the edges To_Server and From_Server. With edges Output_To_Resource and
Read_From_Resource, respectively, we can find which Event is triggered with the
Resource and which Resource are involved in an Event. We use Service_Alert
and Server_Alert to indicate which Service and Servers are related to the
reported Alert. And to find the Alert_Type for each Alert, we use the edge type
Alert_Has_Type.

Queries and Analytics
The queries included in this starter kit present a sample of several different cyberat‐
tack patterns that can be detected using graph-based queries and analytics. Three
of them correspond to attack pattern categories described by CAPEC: functionality
bypassing, footprinting, and fingerprinting.

Detect bypassing of a firewall
Detect users who read from a resource that is protected by a firewall but who are
somehow evading the firewall.

Suspicious IP detection
Given an IP address, find all connections to banned IP addresses within a given
number of hops.

Flooding detection
Detect anomalies based on an unusually high number of requests to a service.
Return the user who is responsible for the flooding event.

Footprinting detection
Detect anomalies based on an unusually high number of calls to an endpoint of
a service in a short period of time. Return the user who is responsible for the
footprinting event.

Tracing the source of an alert
Track down which user elements and IP addresses cause an alert for a corrupted
file.

Some of these queries will display paths from events or IPs of interest back to the
targeted related entities. Other queries are most easily understood by looking at the
tabular results.

180 | Chapter 8: Strengthening Cybersecurity

7 “CAPEC-554: Functionality Bypass,” CAPEC, last updated October 21, 2021, https://capec.mitre.org/data/defi
nitions/554.html.

Detect bypassing of a firewall
A functionality bypass attack accesses services while bypassing functionality intended
to provide system protection.7 If access to a certain resource is protected by a firewall,
then every read access should be preceded by a successful firewall event, as illustrated
in Figure 8-2 (reading from right to left). The firewall_bypass_detection query
detects users or IP addresses that somehow evaded firewall protection and read a
protected resource. It uses both graph traversal and set algebra to group users into
four different categories. We start with selecting all the Resource elements for which
Firewall_required == TRUE. From those resources, we first traverse to all read
Event vertices. This corresponds to the first hop shown in Figure 8-2.

Figure 8-2. Traversal path and first two user sets for firewall_bypass_detection
query

Then we identify four sets of users. In this case, we will consider both UserID and IP
addresses as “users.” The first set of users is simply everyone linked to the read events
to firewall-protected resources:

 ip_userid = SELECT t // set of all users accessing the events
 FROM read_events:s -((Has_IP|User_Event):e)- :t
 ACCUM t.@read_time += s.Start_Date;

The second set is the subset of those users who are also linked to a firewall event:

 ip_userid_firewall = SELECT s // set of all users accessing with firewall
 FROM ip_userid:s -((Has_IP|User_Event):e)- :event
 WHERE event.Event_Type == "firewall"
 ACCUM s.@firewall_time += event.Start_Date;

The third set is those users who read without also engaging in a firewall event. We
can obtain this set by subtracting the second set from the first set:

 ip_userid_no_firewall = ip_userid MINUS ip_userid_firewall;

Implementing a Cybersecurity Graph | 181

https://capec.mitre.org/data/definitions/554.html
https://capec.mitre.org/data/definitions/554.html

Our fourth and final set of users is those who had both a read and a firewall event
(second set), but the read event took place prior to the firewall event, meaning that
the firewall was bypassed:

 ip_userid_bypass_firewall = SELECT s
 FROM ip_userid_firewall:s
 WHERE s.@read_time.size() > s.@firewall_time.size();

Table view is the best option for viewing these results. You’ll find nine IDs in the
IP_userID_no_firewall category and one IP in the IP_userID_bypass_firewall
group. In a real use case, a user could have many read and firewall events over time,
so timestamps, session IDs, or some other mechanism should be used to determine
which events are part of the same session.

Suspicious IP detection
While being closely connected to an undesired entity is not evidence of wrongdoing,
it is a justified cause for closer investigation. The suspicious_ip_detection query
detects banned IP addresses that are linked to a given input IP address within a
certain number of hops. The query uses a WHILE loop and the GSQL ACCUM clause’s
natural orientation for breadth-first search to efficiently discover shortest paths. It
returns the number of banned IP addresses within a given number of hops and the
number of the shortest paths to those banned IP addresses.

The query has three parameters: input_ip is the IP address to investigate, depth is
how many hops away from input_ip we would like to travel (the default is 3), and
display_paths is a Boolean indicator to specify whether to visualize the paths to the
banned IP addresses:

 CREATE QUERY suspicious_ip_detection(VERTEX<IP> input_ip, INT depth=3,
 BOOL diplay_paths=FALSE) {

The implementation follows a classic breadth-first unweighted shortest path search
method. Each vertex has two accumulators to track information about shortest paths
from input_ip to itself. We initialize a vertex set (called start) to be input_ip and
initialize its accumulator @num_shortest_paths to 1 (because there is one path from
input_ip to itself). Then, using a WHILE loop that iterates depth times, we repeat the
following.

182 | Chapter 8: Strengthening Cybersecurity

First we travel from start to all neighboring vertices that have not been visited. We
know a vertex t has not been visited before if t.@num_shortest_paths == 0:

 start = SELECT t // (1) Step to unvisited neighbors
 FROM start:s -(:e)- :t
 WHERE t.@num_shortest_paths == 0

Second, we account for shortest paths. When we arrive at a previously unvisited
neighbor vertex t, it must have been along a shortest path. Therefore we update t’s
count of shortest paths to itself (t.@num_shortest_paths) and its collection of edges
to display these paths (t.@edge_list):

 ACCUM // (2) record # shortest paths
 t.@num_shortest_paths += s.@num_shortest_paths,
 t.@edge_list += e,
 t.@edge_list += s.@edge_list

Third, we check if the neighbor is tagged as a banned IP. If it is, we
update three global accumulators. First, we add that neighbor to @@nearby_ban
ned_IPs. Second, we add the number of shortest paths to t (t.@num_short
est_paths) to @@num_paths_to_banned_IPs. Third, we append the paths themselves
(t.@edge_list) to @@paths_to_banned_IPs:

 POST-ACCUM CASE WHEN t.banned == TRUE THEN
 // (3) Track the banned IPs. Tally the paths to banned IPs
 @@nearby_banned_IPs += t,
 @@num_paths_to_banned_IPs += t.@num_shortest_paths,
 @@paths_to_banned_IPs += t.@edge_list

We then update the vertex set start to be the target set t. We repeat the three steps
above, this time starting the traversal from our newly visited vertices of the previous
round. We perform depth rounds to ensure that we move that many steps away from
our input IP address, or until we run out of unvisited vertices (WHILE start.size()
> 0 LIMIT depth DO).

Using the suggested inputs input_ip = 188.117.3.237 and depth = 4, we find 18
suspicious IPs, as shown in Figure 8-3. A higher depth will find even more, but the
greater distance may decrease the likelihood of malfeasance.

Implementing a Cybersecurity Graph | 183

8 “CAPEC-125: Flooding,” CAPEC, last updated October 21, 2021, https://capec.mitre.org/data/defini
tions/125.html.

Figure 8-3. IPs connected to a given banned IP, within a depth of 4 (see a larger version
of this figure at https://oreil.ly/gpam0803)

Flooding detection
The next two queries focus on detecting anomalies that may be a cyberattack. A
flooding attack makes a large number of service requests to a target in an attempt to
overwhelm it.8 The flooding_detection query detects if one service receives many
more requests than usual. This query is a good example of how GSQL’s support for
algorithmic programming and accumulators makes it easy to calculate statistics such
as mean and standard deviation, and then to perform filtering based on those values.

The query includes one parameter, n_sigma, where sigma> refers to standard devia‐
tion. The default value is 3.0, which means that an IP is considered an outlier if its
number of login events is more than three standard deviations above the mean. This
parameter lets users easily tune the alert threshold.

The overall flow of this query consists of four single hops, where we eventually count
the number of service requests per IP and compare it against the mean among all
other IPs to determine if it is an outlier. Figure 8-4 shows a sample graph and how the
events would be aggregated by the query.

184 | Chapter 8: Strengthening Cybersecurity

https://capec.mitre.org/data/definitions/125.html
https://capec.mitre.org/data/definitions/125.html
https://oreil.ly/gpam0803

Figure 8-4. Accumulation in the flooding_detection query

In the first hop, we select all the login events per IP address by traversing from IP
to Event via Has_IP edges. The clause WHERE event.Event_Type == "login" filters
the selection to only include login events. Then we count the number of logins per IP
address: @count_map += (i->1). The i->1 in this statement means that we add 1 for
each occurrence by an IP address i. In the next few hops, we will transfer or regroup
the counts from this step to compute the subtotal by user, request event, and service:

 login_events = SELECT event
 FROM IPs:i -(Has_IP)- :event
 WHERE event.Event_Type == "login"
 ACCUM event.@count_map += (i->1);

In the second hop, we link the number of login events to the users. This is
done by traversing from login_events to User over User_Events edges. We use
user.@count_map += le.@count_map to group the previously counted events by user.
In Figure 8-4, we see that User1 has two login events from IP1:

 users = SELECT user
 FROM login_events:le -(User_Event)- :user
 ACCUM user.@count_map += le.@count_map;

In the third hop, we link to the request events of the users that we found in the
second hop. The clause WHERE event.Event_Type == "request" checks that we are
including only request events. Then we copy our previous counts to the request
events:

Implementing a Cybersecurity Graph | 185

 events = SELECT event
 FROM users:u -(User_Event:e)- :event
 WHERE event.Event_Type == "request"
 ACCUM event.@count_map += u.@count_map;

In the fourth and final hop, we link the request events from the previous hop
to Service elements. We also accumulate our ongoing counts and group them by
Service. In Figure 8-4, we see that Service1 has a total of four login events from
IP1, two via User1 and two via User3. Now we can compute the final statistics to
determine whether the IP has triggered an unusual volume of requests. We do this
in three steps. In the first step, we use AvgAccum accumulators to easily calculate the
mean count among all IPs:

 FOREACH (ip,cnt) in s.@count_map DO
 s.@mean += cnt // @mean is an AvgAccum
 END,

In the second step, we compute the standard deviation (using the @mean from the first
pass):

 FOREACH (ip,cnt) in s.@count_map DO
 s.@stdev += pow(cnt - s.@mean, 2)
 END,
 s.@stdev = sqrt(s.@stdev/(s.@count_map.size()-1)),

Lastly, we check for outliers by comparing each login count with the mean and
standard deviation. If the count is larger than the mean plus the product of n_sigma
(our threshold value set in the parameter) and the standard deviation, then the IP’s
login behavior is an outlier:

 CASE WHEN s.@stdev != 0 THEN
 // calculate the outlier
 FOREACH (ip,cnt) in s.@count_map DO
 CASE WHEN cnt-s.@mean > n_sigma*s.@stdev THEN
 @@outlier_list += Result_Tuple(
 ip,s,cnt,s.@mean,s.@stdev)
 END
 END
 END

For simplicity, we did not include the time aspect of each login and request event.
In a real-life scenario, a login event must precede its associated request event, and
the request events must occur within a small enough time window to be considered
an attack. In this example, we kept it simple and only demonstrated how graphs can
obtain event triggers over the entire network to calculate individual statistics.

Running the query with n_sigma = 3 finds IP 216.61.220.149 listed twice in the table
view, once for high use of service 11 and once for service 12.

186 | Chapter 8: Strengthening Cybersecurity

9 “CAPEC-169: Footprinting,” CAPEC, last updated October 21, 2021, https://capec.mitre.org/data/defini
tions/169.html.

Footprint detection

Another type of cyberattack is footprinting. Footprinting calls many endpoints of
a service in a short time in an attempt to understand its configuration, behavior,
and vulnerabilities.9 The footprinting_detection query demonstrates how we can
detect users carrying out these operations. The implementation is very similar to the
flooding detection query in the sense that it computes the mean, standard deviation,
and outlier to detect Users with anomalous behavior.

This query has three parameters: n_sigma sets the threshold for determining an
outlier, and start_date and end_date determine the time window in which we want
to detect footprinting.

First, we select all Events that are of type "request" and that occurred between
start_date and end_date:

 events = SELECT s
 FROM events:s
 WHERE s.Start_Date > start_date AND s.Start_Date < end_date
 AND s.Event_Type == "request";

Then, we record all the endpoint requests by each user. We do this by traversing
from Events to User using the User_Event edge type. We add every endpoint that the
user has called to event.@api_map. Because the maps are attached to each event, each
event will have a single map entry:

 events = SELECT event
 FROM events:event -(User_Event)- :user
 ACCUM event.@api_map += (user -> event.Endpoint); // make map

Then we traverse from Events to Service to group the endpoint requests by service:

 services = SELECT s
 FROM events:ev -(To_Service)- :s
 ACCUM s.@api_map += ev.@api_map

We then compute outlier statistics as we did in the flooding detection query. There
is a small difference here between the flooding detection and footprinting detection
queries. The flooding detection’s MapAccum value type is SumAccum<INT>. It is already
a sum. In footprinting detection, the MapAccum value type is SetAccum<STRING>: a
collection of names of endpoints. To compute a mean, we need to know how many
endpoints are in each set, thus cnt.size():

 FOREACH (user,cnt) IN s.@api_map DO
 s.@mean += cnt.size()
 END,

Implementing a Cybersecurity Graph | 187

https://capec.mitre.org/data/definitions/169.html
https://capec.mitre.org/data/definitions/169.html

The standard deviation and outlier computations are exactly analogous to the com‐
putations in the flooding detection query. Running the query with the default input
values shows that user 1 has unusually high use of services 13 and 14.

Tracing the source of an alert
In our last example, an alert has already been raised, and we follow a path in the
graph to track down the users and their IP addresses that may have caused an alert.
The path we will follow is illustrated in Figure 8-5. We start from the most recent
Alert of a particular Alert_Type that was raised and then trace backward to its
cause. From the Alert, we follow links to the Service that raised the Alert. If the
Alert_Type is data corruption of a file, the Alert would be noticed during a file read
Event, so we trace back to that. A write Event would have caused the corruption, so
we trace back to that. Finally, we trace back to the UserID and the IP that performed
that write. The overall flow of this query is eight hops in a straight line. With
traditional relational databases, this would be eight joins, which is prohibitively slow.
In contrast, we can obtain this insight in real time by traversing the graph model
directly.

Figure 8-5. Path traversal to file the source of an alert

The alert_source_tracing query has three input parameters: alert_type is the
type of alert to trace; num_days is the number of days to look back starting from the
moment the alert was raised; and top_ip is the quantity of IP addresses the query will
return:

 CREATE QUERY alert_source_tracking(STRING alert_type="Data Corrupted",
 INT num_days=8, INT top_ip=20) {

The two MaxAccum accumulators @latest_alert_time and @latest_read_time com‐
pute and record the times of the most recent alert and the most recent read events
responsible for the alerts, respectively. SumAccum<INT> @count counts the number of
write events per user or IP, so that we know which IP addresses are the most prolific.
The ListAccum<EDGE> @path_list collects all the edges needed to represent the
paths from the input alert_type back to the IP vertices that seem to have triggered
those alerts.

188 | Chapter 8: Strengthening Cybersecurity

We group the eight hops into four two-hop stages. In the first stage, we get Alerts of
the given alert_type and then trace back to the affected Service. Each Alert’s date
is added to its Service’s @latest_alert_time accumulator. Because it is a MaxAccum,
it automatically retains the most recent alert date. We add the edges that we traverse
for these two hops to @path_list accumulators at the endpoints of our traversal so
far:

 service = SELECT serv
 FROM alert_types:s -(Alert_Has_Type:e1)- :alert
 -(Service_Alert:e2)- :serv
 ACCUM
 serv.@latest_alert_time += alert.Alert_Date,
 serv.@path_list += e1, serv.@path_list += e2;

In the second stage, we traverse back from these services to files that were read and
that triggered the alert. We traverse two more hops to go from these Services back
to the file Resource via a read Event. We only consider events that were reasonable
triggers for the alert, occurring within one day before the alert:

 resource = SELECT res
 FROM service:s -(From_Service:e1)- :event
 -(Read_From_Resource:e2)- :res
 WHERE datetime_diff(s.@latest_alert_time,event.Start_Date)
 BETWEEN 0 AND 3600*24
 AND event.Event_Type == "read"

After selecting the appropriate file read events, we perform two tasks. First, we record
the time of the most recent read to each file:

 res.@latest_read_time += event.Start_Date,

Second, we transfer the partial paths from the first hop to the Resource vertices and
extend the paths with the edges that connect Service to Resource:

 res.@path_list += s.@path_list,
 res.@path_list += e1, res.@path_list += e2;

In the third stage, we trace back from those files to users who wrote to those files.
This double-hop traversal is structurally similar to the stage two traversal. This stage
starts from Resource vertices to User vertices using the Output_To_Resource and
User_Event edges. It accepts events that are writes and that occurred up to num_days
days before the latest read. In addition, we increment user.@count to store the
number of times the user has written to the file, and we again transfer and extend the
paths:

 users = SELECT user
 FROM resource:s -(Output_To_Resource:e1)- :event
 -(User_Event:e2)- :user
 WHERE datetime_diff(s.@latest_read_time, event.Start_Date)
 BETWEEN 0 AND 3600*24*num_days

Implementing a Cybersecurity Graph | 189

 AND event.Event_Type == "write"
 ACCUM user.@count += 1, // Tally writes per user
 user.@path_list += s.@path_list,
 user.@path_list += e1, user.@path_list += e2;

In this final stage of the query, we trace back from those user vertices, through login
events, ending at the IP addresses that caused the alert. We start our traversal from
the User vertices and perform a double hop using User_Event and Has_IP edges. We
use accumulators to transfer and extend the paths one more time. The paths now
have length 8, from Alert_Type to IP. We also compute the number of times a user
has written to the file per IP address. Finally, we sort the list of IPs by write count and
only take the top_ip addresses to return:

 login_IP = SELECT ip
 FROM users:s -(User_Event:e1)- :event
 -(Has_IP:e2)- :ip
 WHERE event.Event_Type == "login"
 ACCUM ip.@count += s.@count, // Tally user-writes per IP
 ip.@path_list += s.@path_list,
 ip.@path_list += e1, ip.@path_list += e2
 ORDER BY ip.@count DESC
 LIMIT top_ip;

Using the default input values (alert_type = "Data Corrupted", num_days = 7, and
top_ip = 3), we find that the top IP sources of file corruption have 31, 18, and 11
events, respectively, of a user writing to an eventually corrupted file, within the time
window. The visual display of the paths explains how we arrived at these sums.

Chapter Summary
In this chapter, we have shown how graphs can strengthen cybersecurity. Cyberat‐
tacks follow patterns, and these patterns can be represented as a graph query. We
demonstrated detection queries for three types of attacks, a risk-assessment query
that measures the proximity to banned IPs, and a source-tracing query to see who
and what caused an alert.

190 | Chapter 8: Strengthening Cybersecurity

CHAPTER 9

Analyzing Airline Flight Routes

Graph algorithms are an essential tool for performing graph analytics. While one
can study the algorithms themselves from a textbook, a practitioner needs to gain
hands-on experience using a graph algorithm library and applying algorithms to
real-world use cases. This chapter will use graph algorithms to analyze a global airline
flight route network. We will apply three categories of algorithms: shortest path,
centrality, and community detection.

After completing this chapter, you should be able to:

• Install and run TigerGraph GDS algorithms•
• Set required and optional parameters for algorithms•
• Modify a GSQL algorithm or other query to make a customized version•
• Use the Explore Graph feature to display selected vertices and edges, including•

creating an attribute filter
• Understand the application of shortest path, centrality, and community algo‐•

rithms to a routing network

Goal: Analyzing Airline Flight Routes
Schiphol Airport in Amsterdam is located in the relatively small country of the Neth‐
erlands. Despite the Netherlands having only 17 million residents, its biggest airport
is a top-tier hub for transferring over 25 million passengers and 1.6 million tonnes

191

1 “Our Most Important Traffic and Transport Figures,” Schiphol, accessed May 24, 2023, https://www.schi
phol.nl/en/schiphol-group/page/traffic-review.

of cargo in 2021.1 To achieve such a feat, airports like Schiphol face the challenge
of scheduling hundreds of aircraft for thousands of flights. Schiphol Airport had
almost 500 million air transport movements in 2019, just prior to the COVID-19
pandemic. An airport is a time-sensitive business that operates under complex logis‐
tical constraints such as flight connectivity for each route. The goal of an airport is to
maximize the total profit by scheduling these routes in the most cost-efficient way.

Once airlines have established their flight schedules, passengers then have the task
of choosing the routes that make the most sense for them. For some routes, fliers
will be able to choose from multiple options. Fliers may want a route that makes the
fewest connections, or they may want the shortest route. Today, fliers can use online
search tools that can incorporate the benefits and costs of each flight, such as the
shortest route. Just as the PageRank algorithm was the start for Google’s web search
utility, shortest path algorithms were the core for airline flight search tools. Some
fliers seek additional analysis of the flight network. Persons who fly to a wide range
of destinations on a regular basis, such as salespersons and consultants, may want to
know which airports are the best hubs.

Some industries may benefit from finding communities of connected airports where
there are actually fewer connections to the larger network of airports as a whole. For
example, a wildlife photography tour agency may be interested in selling package
tours in a remote area. If that area is less connected to large hubs, it is likely to be
more remote and therefore more popular with photographers looking to get “off the
beaten track.” Ideally, that remote region would have its own local community of
flight routes to facilitate travel to different locations. Another example might be a
consultant for an airline company looking for underserved routes. A graph of what
communities are relatively isolated from the rest of the world could be a starting
point for suggestions for new routes to open up.

Solution: Graph Algorithms on a Flight Route Network
Flight traffic forms a network of airports connected by flights. Therefore, graph
analytics is a natural way to visualize and analyze routes and their influence on
airport business. We can use directional graphs to incorporate the departure location
and the destination of each flight and use edge attributes to include costs such as
distance, time, or carbon exhaust. Just by forming the graph, we can easily make basic
observations such as the number of incoming or outgoing flights from an airport.
However, by using graph algorithms, we can perform more complex analyses such as
identifying the most influential airports and the most cost-efficient paths.

192 | Chapter 9: Analyzing Airline Flight Routes

https://www.schiphol.nl/en/schiphol-group/page/traffic-review
https://www.schiphol.nl/en/schiphol-group/page/traffic-review

2 “Airline, Airport and Route Data,” OpenFlights.org, accessed May 24, 2023, https://openflights.org/data.html.
3 The International Air Transport Association assigns each major airport a three-letter code, such as AMS

for Amsterdam Schiphol Airport or CDG for Paris Charles de Gaulle Airport. The vertex attribute ID is an
internal number used only in this dataset.

We can define the most efficient route for our use case using edge attributes. For
example, if we are looking for the shortest route, we can include the flight distance
as an attribute. In other cases, where we are looking for the cheapest flight, we can
include the price of each flight between airports, or we can include CO2 emissions on
each edge attribute if we are interested in finding the most sustainable flight option.

Implementing an Airport and Flight Route Analyzer
Now we show some of these graph algorithms in action, using another TigerGraph
Cloud Starter Kit.

The Graph Algorithms Starter Kit
Using TigerGraph Cloud, deploy a new cloud database instance and select “Graph
Algorithms - Centrality Algorithms” as the use case. Once this starter kit is installed,
load the data following the steps listed in the section “Load data and install queries
for a starter kit” on page 50 in Chapter 3.

Graph Schema and Dataset
The dataset represents actual airports and flight routes circa 2014 obtained from
OpenFlights.org.2 There is only one vertex type, Airport, with attributes for ID,
name, city, country, IATA code,3 latitude, and longitude. An additional attribute
called score is included as a generic placeholder to store the result of an algorithm.
For example, if we were to run PageRank on the graph, that would generate a
PageRank score for each vertex. We could store those values in this attribute. We have
data for 7,935 airports. Having a single vertex type makes this graph ideal for direct
analysis with standardized graph algorithms, most of which assume a graph with a
single vertex type.

The two edge types, flight_route and flight_to, come from the same source file
routes.dat, a list of scheduled commercial service from one airport to another. The
table has a row for each airline that offers nonstop service from one city to another,
regardless of frequency. The flight_to edges are directed. The flight_route edges
are undirected, meaning there is nonstop service between these cities, but ignoring
the direction. There are 19,268 flight_route edges and 37,606 flight_to edges,
almost twice the number of flight_route edges, meaning nonstop service is usually
bidirectional. The simplicity of the schema in Figure 9-1 is a good reminder of the

Implementing an Airport and Flight Route Analyzer | 193

http://openflights.org
https://openflights.org/data.html
http://openflights.org

4 “tigergraph / gsql-graph-algorithms,” GitHub, accessed May 24, 2023, https://github.com/tigergraph/gsql-graph-
algorithms.

difference between schema complexity (here, one vertex type and two edge types) and
data complexity (about 8,000 vertices and 57,000 edges).

Figure 9-1. Schema for flight route dataset (see a larger version of this figure at https://
oreil.ly/gpam0901)

Installing Algorithms from the GDS Library
One of the beauties of graph algorithms is that they have standard definitions and
will work on any graph that meets their conditions. For example, a shortest path
algorithm for unweighted edges should work on any graph. As of May 2023, the
TigerGraph GDS (Graph Data Science) Library contains more than 55 algorithms,
available on GitHub.4 They are offered in two formats to let users choose convenience
over performance: schema-free and template.

Schema-free algorithms are written as open source GSQL queries where the vertex
type, edge type, and relevant attributes of vertices or edges are runtime parameters.
They only need to be installed once, and then they are ready to be used for any
graph. Template algorithms are written in proto-GSQL. The user does not perform
an explicit install operation. Template algorithms are executed using CALL instead of
INSTALL and RUN. If a CALL statement specifies schema details (vertex type, edge
type, and attributes) that have not been CALLed before, then the database installs an
optimized version of the template query with those schema details hardcoded. CALL
then runs this schema-specific algorithm. If a CALL statement uses schema details that
have been used before, then the database skips installation and just runs the installed
algorithm. Table 9-1 compares the two types.

Table 9-1. Comparing schema-free and template algorithms

 Schema-free algorithms Template algorithms
Installation Once Once for each combination (vertex type, edge type, graph

attributes) used in a CALL
Runtime performance Somewhat slower, may use more

memory
Optimized: faster and less memory

Commands INSTALL, RUN CALL

194 | Chapter 9: Analyzing Airline Flight Routes

https://github.com/tigergraph/gsql-graph-algorithms
https://github.com/tigergraph/gsql-graph-algorithms
https://oreil.ly/gpam0901
https://oreil.ly/gpam0901

5 In real-life situations, flights often take slightly indirect routes to benefit from wind currents or to avoid
restricted airspace.

 Schema-free algorithms Template algorithms
User customization Simple, just like GSQL queries Indirect, due to template nature

We will use schema-free algorithms. Follow these steps to install the schema-free
algorithms we will use to analyze the flight route network:

1. On the Write Queries page of GraphStudio, look for and click the Add New1.
Query button (a dark circle with a + symbol) at the bottom of the GSQL queries
pane.

2. A panel will pop up.2.
3. Click CHOOSE FROM LIBRARY.3.

A new panel with a list of algorithm categories appears. Click on the arrow to the
right of Centrality. Select the boxes next to Betweenness Centrality and Closeness
Centrality. Also select Community → Connected Components and Path → Shortest
Path. Then click INSTALL. Installation will take a few minutes.

Queries and Analytics
This starter kit covers three categories of graph algorithms, which all provide useful
answers and analyses about flight routes. In addition, there are a few utility queries
that help to prepare the data in order to inspect the individual records.

Utility queries
Calculate flight distances

• The original dataset does not tell us the distances traveled. This query uses•
latitude and longitude to calculate the length of a direct flight between two
airports.5

Search for vertex

• Not every airport in the dataset has an IATA code. To identify an airport, we•
may need to search based on the city or airport name. This query provides a
general vertex search function.

Path algorithms
Many travelers want to find the routes with the fewest connections, shortest
distance traveled, or lowest cost. The Shortest Path algorithm will find the route
from one vertex to another having the fewest segments. The Shortest Path,
Weighted algorithm works with data where each edge has a numeric weight that

Implementing an Airport and Flight Route Analyzer | 195

could represent a real-world factor like time, distance, or dollars. It finds the path
from one vertex to another that has the least total weight.

Centrality algorithms
This kit uses Closeness Centrality and Betweenness Centrality to rank the routing
importance of airports in two different ways.

Community detection algorithms
In a routing network, there are more routing options available to travel within
one community than to travel between communities. We run the Strongly Con‐
nected Component algorithm to see what it reveals about the worldwide airline
route network.

Calculate route length

The first step when using this starter kit is to run the calculate_route_length
query. This query calculates the length in miles of each route, using the latitudes and
longitudes of the airports. The query uses the haversine formula to account for the
curvature of the earth. The arc length of each route is then stored in each vertex’s
attribute called miles.

When running the query, you need to specify the edge type. Run the query twice:
once with edge type flight_to, and another time with edge type flight_route.
Were you to run this query in a GSQL command line shell, the commands and
output would be like the following:

RUN QUERY calculate_route_length("flight_to", True)
[
 {
 "@@dontChangeList": [],
 "@@numChanged": 37606
 }
]

RUN QUERY calculate_route_length("flight_route", True)
[
 {
 "@@dontChangeList": [],
 "@@numChanged": 38535
 }
]

Measure and analyze centrality
Which airports have the most connecting flights? Which airports would be the best
base of operations for a person or company who wants to travel conveniently to
anywhere? If this is what you want to know, use a centrality algorithm. Centrality is
a measure of the importance of a vertex based on its relative position in a network.

196 | Chapter 9: Analyzing Airline Flight Routes

6 “TigerGraph Graph Data Science Library,” TigerGraph, accessed May 24, 2023, https://docs.tiger
graph.com/graph-ml/current/intro.

There are several ways to define centrality; as of October 2022, the TigerGraph
GDS algorithm library had 12. We will try two of them, closeness and betweenness,
comparing their definitions and their results.

The closeness centrality score of a vertex v is the inverse of the average of shortest
path distances from v to other vertices in the graph. For example, in a four-vertex
graph, if the shortest path distances from v to the other three vertices are 1, 1,
and 2, then closeness(v) = 1/(1+1+2) = 0.25. In an airline route network, a high
closeness centrality score for an airport means it has a large number of nonstop and
one-stop routes to other airports. A small regional airport generally has low closeness
centrality because of the low number of destinations directly reachable from it.

In the query selection pane, click on the tg_closeness_cent algorithm query.
Table 9-2 lists the full set of parameters. Many of these parameters are standard
features of TigerGraph GDS algorithms, so we’ll spend a little time reviewing them
here.

Table 9-2. Parameter for tg_closeness_cent algorithm

Parameter Description Default
SET<STRING> v_type Vertex types to use (empty set of

strings)
SET<STRING> e_type Edge types to use (empty set of

strings)
SET<STRING>

rev_e_type

Reverse edge types to use (empty set of
strings)

INT max_hops If >=0, look only this far from each vertex 10

INT top_k Output only this many scores (scores are always sorted highest to
lowest)

100

BOOL wf Whether to use Wasserman-Faust normalization for multicomponent
graphs

True

BOOL print_results If true, output JSON to standard output True

STRING result_attr If not empty, store centrality values in FLOAT format to this vertex
attribute

(empty string)

STRING file_path If not empty, write output to this file in CSV format (empty string)

BOOL display_edges If true, include the graph’s edges in the JSON output so that the full
graph can be displayed

False

The first three parameters (v_type, e_type, rev_e_type) specify which vertices and
edges of the graph the algorithm should run on. Some algorithms are designed for
directed edges, some for undirected edges. It’s important to check the documentation6

Implementing an Airport and Flight Route Analyzer | 197

https://docs.tigergraph.com/graph-ml/current/intro
https://docs.tigergraph.com/graph-ml/current/intro

to see which type of edge is preferred or permitted. Reverse edges may or may not
exist in a graph; they are an option available to the schema designer.

The next three parameters (max_hops, top_k, wf) are specific to closeness_central
ity, though max_hops and top_k appear in several other algorithms. For closeness
centrality, vertices further away than the max_hops limit will not be considered in
the computation of average distance. top_k is available for algorithms that produce
results that can be treated as a ranking. The wf parameter enables a modified measure
of closeness centrality that normalizes scores in the case of a graph that is composed
of disconnected subgraphs of different sizes.

The last four parameters (print_results, result_attr, file_path, display_edges)
are standard parameters for the user to specify how they want the results to be
delivered. The default is to stream JSON text to the standard output.

Run tg_closeness_cent with v_type = Airport, e_type = flight_to, and
rev_e_type = reverse_flight_to. The other parameters can be left at their default
values.

The results show that the top 10 airports are FRA, CDG, LHR, DXB, AMS, LAX, JFK,
YYZ, IST, and ORD, which decode to Frankfurt, Charles de Gaulle (Paris), London
Heathrow, Domodedovo (Moscow), Amsterdam, Los Angeles, John F. Kennedy (New
York), Toronto, Istanbul, and O’Hare (Chicago). These airports are widely recognized
as the busiest and more important hub airports in the world, so the results seem
logical.

We next calculate betweenness centrality. The betweenness centrality of a vertex is
defined as the number of shortest paths that pass through it, divided by the total
number of shortest paths of the graph. An example of high betweenness is the
Panama Canal. It is a part of the sea journey between ports on the Atlantic Ocean and
ports on the Pacific Ocean, giving it high betweenness centrality even though Panama
itself is less often the start or end of a journey. Gas stations are also often placed at
intersections with high betweenness centrality. Though they are typically not the start
or end of a journey, it’s useful for gas stations to be along the routes of many travelers,
each of whom has a different start and end route.

Next, run tg_betweenness_cent with the same parameter settings you used for
tg_closeness_cent. It takes longer to run because betweenness centrality considers
paths from anywhere to anywhere, whereas closeness centrality considers only one
hub vertex.

All algorithms are not created equal. Check your algorithm
library’s documentation for guidance on the expected time and
resources to run an algorithm.

198 | Chapter 9: Analyzing Airline Flight Routes

For betweenness, the top 10 airports are Domodedovo, Peking (Beijing), Chicago
O’Hare, Istanbul, Bogota, Denver, Atlanta, Manila, Bueno Aires, and Dallas–Fort
Worth. These results are quite different and perhaps surprising. Remember that
betweenness gives a high score to bottlenecks or gateways like the Panama Canal.
We can speculate that Bogota and Buenos Aires are important gateway airports for
regional airports in South America. Manila may play a similar role for the Philippines
and Southeast Asia.

Moreover, the standard betweenness algorithm considers all shortest paths to be
equally important, so getting from LAX (Los Angeles) to JFK (New York) has the
same importance as getting from SXE (Sale, Australia) to QGQ (Attu, Greenland).
We did not take passenger volume or number of flights into consideration. If we
had this data, we would then want to modify the algorithm to compute a weighted
betweenness score. Since TigerGraph GDS algorithms are written in GSQL, they can
be modified by a GSQL user. In the next section, we will try our hand at customizing
algorithms.

Find shortest paths
First we will use the shortest path algorithm for unweighted edges; this will tell
us which airline routes have the fewest stops. Then we will run the shortest path
algorithm for positive edge weights, which will tell us which routes travel the fewest
miles. Of course, there can be multiple paths that have the same path length. Some
algorithms find a shortest path, and some find all shortest paths. In a weighted
graph, it takes only a little more bookkeeping to find the set of shortest paths from
one starting point to every other vertex as it does to find the shortest path to just
one destination vertex. This is because, for a weighted graph, every edge in the
graph must be traversed in order to be certain that the algorithm has found the
absolute shortest path. Therefore, the shortest path algorithms in the library are the
one-source-all-destinations variety.

We need to know the ID for the source vertex. Unfortunately, it is difficult to select an
airport ID system that uses names that everyone knows. City names are insufficient,
because some cities have multiple airports, and while many travelers know IATA
codes like LAX, this database extends to smaller airports that do not have IATA
codes. The OpenFlights.org data tables use numerical IDs of their own devising. For
example, the ID for LAX is 3484. As a compromise, our graph database concatenates
the IATA code with the OpenFlights.org ID, so our ID for LAX is LAX-3484.

To help users find an airport’s ID, the starter kit includes a query called
_search_for_vertex. It has three parameters: a vertex type, the name of an attribute
of that vertex type, and the value you are looking for. The query returns the IDs
and names of all matching vertices. For example if we wanted to find the ID for
Cleveland’s main airport, we would run the following query:

Implementing an Airport and Flight Route Analyzer | 199

RUN QUERY _search_for_vertex("Airport","city","Cleveland")

We get three matching airports. Cleveland Hopkins International Airport is the major
one, so let’s use CLE-3486. Looking at GraphStudio’s table view, you will see output
like Table 9-3.

Table 9-3. Search results for airports located in Cleveland

v_id v_type Result.id Result.name
HDI-8793 Airport HDI-8793 Hardwick Field
CLE-3486 Airport CLE-3486 Cleveland Hopkins International Airport
BKL-8544 Airport BKL-8544 Burke Lakefront Airport

Now run the shortest path algorithm, tg_shortest_ss_no_wt, with these arguments:

 source = CLE-3486
 v_type = Airport
 e_type = flight_to

Look at either the JSON or tabular output. It’s a lot of data (remember we have nearly
eight thousad airports), and many of the airport IDs are unfamiliar. Table 9-4 shows
one of the shortest paths. While the data may be correct and useful for a database, it’s
not very human friendly.

Table 9-4. Example of shortest path from CLE to another airport

v_id v_type ResultSet.@min_dis ResultSet.@path_list
ZQZ-10940 Airport 4 [

“CLE-3486”,
“YYZ-193”,
“TPE-2276”,
“SJW-6347”,
“ZQZ-10940”
]

In the next section, we will modify the algorithm to give us more readable output and
to only show results a certain distance from the source vertex using edge weights.

Modify a GSQL algorithm to customize the output
Let’s make two changes to customize the output. First, click on the Save As icon
on the menu bar above the GSQL code window. Name the copied algorithm tg_short‐
est_ss_modified. We will output only those paths that are no more than three hops
long, and we will add the city name as another field in the output. We make edits in
four places:

1. Find the line:1.

200 | Chapter 9: Analyzing Airline Flight Routes

ListAccum<VERTEX> @path_list;

Insert another line below it:
ListAccum<STRING> @city_list;

This defines data structures to hold lists of cities.
2. About 10 lines below that, find the line:2.

s.@path_list = s;

Insert this line above it:
s.@city_list = s.city,

It’s important to insert this line above, in order to get the right punctuation. That
is, we want to end up with:

s.@city_list = s.city, // Added
s.@path_list = s;

3. Find the other line that updates @path_list:3.
t.@path_list = s.@path_list + [t],

Insert another line below it:
t.@city_list = s.@city_list + [t.city],

4. Find the line near the end that prints the paths:4.
PRINT ResultSet[ResultSet.@min_dis, ResultSet.@path_list];

Modify and extend it so that it becomes:
PRINT ResultSet[ResultSet.@min_dis, ResultSet.@path_list,
 ResultSet.@city_list]
 WHERE ResultSet.@path_list.size() <= 3;

Save and install this algorithm. Run it with the same input parameters as before. Now
you should see some recognizable paths, such as the examples in Table 9-5.

Table 9-5. Examples of shortest paths with the addition of city names

v_id v_type ResultSet.@city_list ResultSet.@min_dis ResultSet.@path_list
LAR-5746 Airport [

“Cleveland”,
“Denver”,
“Laramie”
]

2 [
“CLE-3486”,
“DEN-3751”,
“LAR-5746”
]

BQK-5725 Airport [
“Cleveland”,
“Atlanta”,
“Brunswick”
]

2 [
“CLE-3486”,
“ATL-3682”,
“BQK-5725”
]

Implementing an Airport and Flight Route Analyzer | 201

Let’s now run the shortest path algorithm for positive weights. This version is better
for travelers who want to minimize the distance traveled. If our weights were CO2
exhaust instead of miles, we would be minimizing carbon emissions.

While there may be an algorithm already in the starter kit, let’s go to the
GitHub repository for the algorithm library and look for the latest version.
In a web browser, go to https://github.com/tigergraph/gsql-graph-algorithms/blob/
master/algorithms. From there, drill down several categories and subcategories—
Path → shortest_path → weighted → positive → traceback—to eventually find
tg_shortest_ss_pos_wt_tb.gsql.

If you do not already have the tg_shortest_ss_pos_wt_tb query in GraphStudio,
then click the Create Query (+ symbol) button in the GraphStudio query selection
pane. Name the new query tg_shortest_ss_pos_wt_tb. Copy the text from tg_short‐
est_ss_pos_wt_tb.gsql in the GitHub repository and use it to replace the existing query
text in GraphStudio. Save and install the query. Run the algorithm with the following
settings:

 Vertex_id = CLE-3486
 v_type = Airport
 e_type = flight_to
 wt_attr = miles
 wt_type = INT
 output_limit = 10000

One might think that fewest miles would correlate well with fewest connections, but
in the results you will see some paths that have 8 and even 10 hops. To narrow down
the results, let’s make one edit to the algorithm: only display paths that have a cost
value under 3,000 (representing a total trip distance shorter than three thousand
miles). That will limit the results to North America.

Find the lines that print the output:

 PRINT tmp[tmp.@min_path_heap.top().cost as cost, tmp.@path_list as p];

Add a WHERE clause (and move the semicolon) to change each of them to:

 PRINT tmp[tmp.@min_path_heap.top().cost as cost, tmp.@path_list as p]
 WHERE tmp.@min_path_heap.top().cost < 3000;

These shorter results still have some long paths. For example, one can go from
Cleveland to ZKE (the small town of Kashechewan, Ontario, reachable only by
airport and seasonal ice road) in five hops, via YYZ (Toronto), YTS (Timmins), YMO
(Moosonee), and YFA (Fort Albany), all in just 820 miles. This five-hop route is a
fairly straight path going north. It requires multiple hops because the northern towns
are very small with limited air service.

202 | Chapter 9: Analyzing Airline Flight Routes

https://github.com/tigergraph/gsql-graph-algorithms/blob/master/algorithms
https://github.com/tigergraph/gsql-graph-algorithms/blob/master/algorithms

Find and analyze communities
We expect the global airport network to be highly interconnected, but there are parts
of the world that are served only by smaller regional airports. Will a community
detection algorithm point these out to us?

In a directed graph, a strongly connected component (SCC) is the maximal set of
vertices such that every vertex can reach every other vertex in the component. In
an airline route network, if an airline offers direct service between two airports in
both directions, then meeting the SCC requirement is easy. In some areas where there
is less demand, the direct service is not bidirectional. That is where we may find a
break, separating the graph into separate SCCs.

Run tg_scc with the following parameter settings:

 v_type_set = Airport
 e_type_set = flight_to
 rev_e_type_set = reverse_flight_to
 top_k_dist = 100
 print_limit = 10000
 result_attr = score

top_k_dist determines how many communities to output, and output_limit is how
many individual vertices to output. The community ID of each vertex will be stored
on the vertex attribute called score.

Switch the output to tabular results. There are two tables to display. The table
for @@cluster_dist_heap, shown in Table 9-6, tells us that the largest community
includes 3,354 airports. Then there is one community with 10 airports, one with 8,
three with 4 airports, three with 2 airports, and 4,545 singleton airports.

Implementing an Airport and Flight Route Analyzer | 203

Table 9-6. Airport community sizes and counts

csize num
3,354 1

10 1
8 1
4 3
2 3
1 4,545

The output also includes a full list of all the vertices along with their community
IDs. All vertices with the same community ID are members of the same community.
Scanning the list of eight thousand vertices is not convenient, so let’s make another
algorithm modification to get friendlier output.

Use Save As to create a copy of the algorithm query called tg_scc_modified. Make
the following three edits:

1. In the top section containing the Accum declarations, add the declaration below:1.
MapAccum<INT, ListAccum<VERTEX>> @@cluster_member_map;

This data structure will record the list of vertices belonging to each community.
2. Near the end, in the output results section and just after several clear() state‐2.

ments, find the following block:
v_all = SELECT s
 FROM v_all:s
 POST-ACCUM
 @@cluster_size_map += (s.@sum_cid -> 1);

Insert one additional line in the POST-ACCUM clause, and add the five-line FOREACH
block afterward:

v_all = SELECT s
 FROM v_all:s
 POST-ACCUM
 @@cluster_member_map += (s.@sum_cid -> s), //added
 @@cluster_size_map += (s.@sum_cid -> 1);
FOREACH (cid, member_list) IN @@cluster_member_map DO
 IF member_list.size() == 1 OR member_list.size() > 50 THEN
 @@cluster_member_map.remove(cid);
 END;
END;

The line in the POST-ACCUM block builds the list of member lists, and the FOREACH
block removes the lists that are too small or too big for our interest.

3. Find the line:3.

204 | Chapter 9: Analyzing Airline Flight Routes

PRINT @@cluster_dist_heap;

Add the following line after it:
PRINT @@cluster_member_map; // added

Save and install the tg_scc_modified algorithm query. Run it with the following
settings. This time, we will exclude the list of individual vertices:

 v_type_set = Airport
 e_type_set = flight_to
 rev_e_type_set = reverse_flight_to
 top_k_dist = 100
 print_limit = 10000
print_results = false
result_attr = score

Look at the Table View results for @@cluster_member_map. The results show a
community 1048630 with four members: [“AKB-7195”, “DUT-3860”, “KQA-6134”,
“IKO-7196”] and community 3145861 with eight members: [“CXH-5500”,
“LKE-6457”, “WSX-8173”, “RCE-8170”, “FBS-8174”, “LPS-6136”, “YWH-4106”,
“DHB-9540”]. The community ID values that you see might differ, but the group
membership should be consistent.

Let’s visualize a community with 10 members and their flight connections. Note the
community ID: 1048774. Go to the Explore Graph page.

You should be on the Search vertices (magnifying glass icon) work screen. Follow
these steps:

1. In the Search configuration pane, next to Airport, click the filter icon to open an1.
“Add attribute filter” popup window.

2. In the Condition drop-down menu, select Expression1 == Expression2.2.
3. For Expression1, set Operand = Attribute and Attribute name = score.3.
4. For Expression2, set Operand = Real number and value = 1048774. Your window4.

should now look like Figure 9-2.
5. Click ADD.5.
6. Back on the search configuration pane, make sure the number of vertices next to6.

the Pick vertices button is at least 10.
7. Click the Pick vertices button.7.

Implementing an Airport and Flight Route Analyzer | 205

Figure 9-2. Adding a filter to select the vertices that belong to community 1048774

In the exploration mode vertical menu, click the second icon, the one for “Expand
from vertices.” In the list of edge types, unselect flight_route, so that we only
include flight_to edges. Make sure the number of edges per vertex is at least 10.
Click the Expand button.

You should now see edges between the vertices. To tidy up the display, click the layout
mode button in the lower right corner of the graph display pane. Choose force. You
should now see a starlike shape, as in Figure 9-3. We’d like to know more about these
vertices, so click the Setting (gear-shaped) button in the menu at the top. With the
Airport vertex type selected, check the boxes for city and country, and then click
APPLY at the bottom. This adds labels in the graph view for city and country.

We can see that this network of flights is confined to New Caledonia, a collection of
islands in the South Pacific. The hub is Noumea, which is the capital. Furthermore,
when we performed the “Expand from vertices” step, if there had been any flights
to airports outside of New Caledonia, they would have shown up. Apparently there
are no such flights in our database. This may not reflect reality. The OpenFlights.org

206 | Chapter 9: Analyzing Airline Flight Routes

dataset may be missing some flights, but it nevertheless proved to be an interesting
vehicle to see how graph algorithms can be used to reveal facts and insights.

Figure 9-3. Community of isolated flight routes covering New Caledonia (see a larger
version of this figure at https://oreil.ly/gpam0903)

Chapter Summary
In this chapter, we looked at the ways a network of airlines can be examined with
graph algorithms. We used built-in GSQL algorithms included in the GDS Library
to perform pathfinding, centrality calculation, and community detection operations.
In addition, we modified existing query algorithms to filter the data and to give us
more readable and useful results. Finally, we explored more of the functionality in the
Explore Graph window of GraphStudio, creating a visually appealing graph diagram
with easy-to-read labels in seconds.

Chapter Summary | 207

https://oreil.ly/gpam0903

PART III

Learn

CHAPTER 10

Graph-Powered Machine Learning Methods

After completing this chapter, you should be able to:

• List three basic ways that graph data and analytics can improve machine learning•
• Point out which graph algorithms have proved valuable for unsupervised learning•
• Extract graph features to enrich your training data for supervised machine learning•
• Describe how neural networks have been extended to learn on graphs•
• Provide use cases and examples to illustrate graph-powered machine learning•
• Choose which types of graph-powered machine learning are right for you•

We now begin the third theme of our book: Learn. That is, we’re going to get serious
about the core of machine learning: model training. Figure 10-1 shows the stages of
a simple machine learning pipeline. In Part 1 of this book, we explored the Connect
theme, which fits the first two stages of the pipeline: data acquisition and data
preparation. Graph databases make it easy to pull data from multiple sources into one
connected database and to perform entity resolution.

211

Figure 10-1. Machine learning pipeline

In this chapter, we’ll show how graphs enhance the central stages in the pipeline:
feature extraction and all-important model training. Features are simply the charac‐
teristics or properties of your data entities, like the age of a person or the color of
a sweater. Graphs offer a whole new realm of features that are based on how an
entity connects to other entities. The addition of these unique graph-oriented features
provides machine learning with better raw materials with which to build its models.

This chapter has four sections. The first three sections each describe a different
way that graphs enhance machine learning. First, we will start with unsupervised
learning with graph algorithms, as it is similar to the techniques we discussed in
Part 2: Analyze. Second, we will turn to graph feature extraction for supervised and
unsupervised machine learning. Third, we culminate with model training directly on
graphs, for both supervised and unsupervised approaches. This includes techniques
for clustering, embedding, and neural networks. The fourth section reviews the
various methods in order to compare them and to help you decide which approaches
will meet your needs.

212 | Chapter 10: Graph-Powered Machine Learning Methods

Unsupervised Learning with Graph Algorithms
Unsupervised learning is the sibling of supervised learning and reinforcement learn‐
ing, who together form the three major branches of machine learning. If you want
your AI system to learn how to do a task, to classify things according to your
categories, or to make predictions, you want to use supervised learning and/or rein‐
forcement learning. Unsupervised learning, however, has the great advantage of being
self-sufficient and ready to go. Unlike supervised learning, you don’t need to already
know the right answer for some cases. Unlike reinforcement learning, you don’t
have to be patient and forgiving as you stumble through learning by trial and error.
Unsupervised learning simply takes the data you have and reports what it learned.

An unsupervised learning algorithm can look at your network of customers and sales
and identify your actual market segments, which may not fit simple ideas of age and
income. An unsupervised learning algorithm can point out customer behavior that
is an outlier, or far from normal, by determining “normal” from your data and not
from your preconceptions. For example, an outlier can point out which customers are
likely to churn (that is, discontinue using your product or service).

The first way we will learn from graph data is by applying graph algorithms to
discover patterns or characteristics of our data. In Chapter 6, we gave a detailed
overview of five categories of algorithms. In this section, we’ll discuss which of these
algorithms are a good fit for unsupervised learning. We’ll also introduce another
graph analytics task: frequent pattern mining.

Learning Through Similarity and Community Structure
Among the five algorithm categories presented in Chapter 6, the last one—classifica‐
tion and prediction—is commonly considered by data scientists to be in the machine
learning domain. Classification, in particular, is usually supervised learning. Predic‐
tion comes in all flavors. As we previously pointed out, both of those tasks hinge
on some means of measuring similarity. Similarity algorithms, then, are key tools for
machine learning.

If you find all the vertices that have high Jaccard similarity, it might not feel like
you’re doing machine learning. You could take it one step further: was the number of
similar vertices that you found much higher or much lower than what you expected?
You could base your expectation on the typical number of connections that a vertex
has and the likelihood that two random vertices will have a neighbor in common.
Characteristics such as these can tell you important things about your graph and the
real-world things that it represents. For example, suppose a large corporation maps
out its employees and various job-related data in a graph. A manager could search
to see if there are other employees with job qualifications similar to those of the

Unsupervised Learning with Graph Algorithms | 213

manager’s current team. What do the results say about cross-training, resiliency, and
redundancy in the workforce?

When a graph’s structure is determined by lots of individual players rather than
by central planning, its community structure is not known a priori; we have to
analyze the graph to discover the structure. The structure is a reflection of the entities
and their mutual relationships, so learning the structure tells us something about
the entities and their dynamics. The modularity-based algorithms like Louvain and
Leiden are fine examples of self-learning: determining community membership by
looking at the graph’s own relative densities of connections. The recursively defined
SimRank and RoleSim measures also fit the self-learning trait of unsupervised learn‐
ing. Then isn’t PageRank also a form of unsupervised learning?

These algorithms are also quite valuable. Many financial institutions have found that
applying centrality and community algorithms to graphs of transactions has helped
them to better identify financial crimes.

Finding Frequent Patterns
As we’ve said in this book, graphs are wonderful because they make it easy to discover
and analyze multiconnection patterns based on connections. In Part 2: Analyze, we
talked about finding particular patterns, and we will return to that topic later in this
chapter. In the context of unsupervised learning, this is the goal:

Find any and all patterns that occur frequently.

Computer scientists call this the frequent subgraph mining task, because a pattern of
connections is just a subgraph. This task is particularly useful for understanding nat‐
ural behavior and structure, such as consumer behavior, social structures, biological
structures, and even software code structure. However, it also presents a much more
difficult problem. “Any and all” patterns in a large graph means a vast number of
possible occurrences to check. The saving grace is the threshold parameter T. To be
considered frequent, a pattern must occur at least T times. Selecting a good value for
T is important. We want it high enough to filter out small, insignificant patterns—the
more we filter, the less overall work we need to do—but not so high as to exclude
interesting patterns. Choosing a good threshold can be a machine learning task in
itself.

There are many advanced approaches to attempt speeding up frequent subgraph
mining, but the basic approach is to start with one-edge patterns, keep the patterns
that occur at least T times, and then try to connect those patterns to make bigger
patterns:

1. Group all the edges according to their type and the types of their endpoint1.
vertices. For example, Shopper-(bought)-Product is a pattern.

214 | Chapter 10: Graph-Powered Machine Learning Methods

2. Count how many times each pattern occurs.2.
3. Keep all the frequent patterns (having at least T members) and discard the rest.3.

For example, we keep Shopper-(lives_in)-Florida but eliminate Shopper-
(lives_in)-Guam because it is infrequent.

4. Consider every pair of groups that have compatible vertex types (e.g., groups4.
1 and 2 both have a Shopper vertex), and see how many individual vertices in
group 1 are also in group 2. Merge these individual small patterns to make a
new group for the larger pattern. For example, we merge the cases where the
same person in the frequent pattern Shopper-(bought)-Blender was also in the
frequent pattern Shopper-(lives_in)-Florida.

5. Repeat steps 2 and 3 (filtering for frequency) for these newly formed larger5.
patterns.

6. Repeat step 4 using the expanded collection of patterns.6.
7. Stop when no new frequent patterns have been built.7.

There is a complication with counting (step 2). The complication is isomorphism, that
is, how the same set of vertices and edges can fit a template pattern in more than
one way. Consider the pattern A-(friend_of)-B. If Jordan is a friend of Kim, which
implies that Kim is a friend of Jordan, is that one instance of the pattern or two?
Now suppose the pattern is “find pairs of friends A and B, who are both friends with
a third person, C.” This forms a triangle. Let’s say Jordan, Kim, and Logan form a
friendship triangle. There are six possible ways we could assign Jordan, Kim, and
Logan to the variables A, B, and C. You need to decide up front whether these types of
symmetrical patterns should be counted separately or merged into one instance, and
then make sure your counting method is correct.

Graph algorithms can perform unsupervised machine learning on graph data. Key
takeaways from this section are as follows:

• Graph algorithms in several categories fit the self-learning idea of unsupervised•
learning: similarity, community detection, centrality, prediction, and frequent
pattern mining.

• Unsupervised learning has the benefit of providing insight without the require‐•
ment of prior classifications. Unsupervised learning can also make observations
relative to the data’s own context.

Extracting Graph Features
In the previous section, we showed how you can use graph algorithms to perform
unsupervised machine learning. In most of those examples, we analyzed the graph as
a whole to discover some characteristics, such as communities or frequent patterns.

Extracting Graph Features | 215

In this section, you’ll learn how graphs can provide additional and valuable features
to describe and help you understand your data. A graph feature is a characteristic
that is based on the pattern of connections in the graph. A feature can be either
local—attributed to the neighborhood of an individual vertex or edge—or global—
pertaining to the whole graph or a subgraph. In most cases, we are interested in
vertex features: characteristics of the neighborhood around a vertex. That’s because
vertices usually represent the real-world entities we want to model with machine
learning.

When an entity (an instance of a real-world thing) has several features and we
arrange those features in a standard order, we call the ordered list a feature vector.
Some of the methods we’ll look at in this section provide individual features; others
produce entire sets of features. You can concatenate a vertex’s entity properties (the
ones that aren’t based on connections) with its graph features obtained from one or
more of the methods discussed here to make a longer, richer feature vector. We’ll
also look at a special feature vector called an embedding, which summarizes a vertex’s
entire neighborhood.

These features can provide insight as is, but one of their most powerful uses is to
enrich the training data for supervised machine learning. Feature extraction is one
of the key phases in a machine learning pipeline (refer back to Figure 10-1). For
graphs, this is particularly important because traditional machine learning techniques
are designed for vectors, not for graphs. So in a machine learning pipeline, feature
extraction is also where we transform the graph into a different representation.

In the sections that follow, we’ll look at three key topics: domain-independent
features, domain-dependent features, and the exciting developments in graph
embedding.

Domain-Independent Features
If graph features are new to you, the best way to understand them is to look at
simple examples that would work for any graph. Because these features can be used
regardless of the type of data we are modeling, we say they are domain independent.
Consider the graph in Figure 10-2. We see a network of friendships, and we count
occurrences of some simple domain-independent graph features.

216 | Chapter 10: Graph-Powered Machine Learning Methods

Figure 10-2. Graph with directed friendship edges (see a larger version of this figure at
https://oreil.ly/gpam1002)

Table 10-1 shows the results for four selected vertices (Alex, Chase, Fiona, Justin) and
four selected features.

Table 10-1. Examples of domain-independent features from the graph of Figure 10-2

 Number of in-
neighbors

Number of out-
neighbors

Number of vertices within two
forward hops

Number of triangles
(ignoring direction)

Alex 0 2 (Bob, Fiona) 6 (B, C, F, G, I, J) 0
Chase 1 (Bob) 2 (Damon, Eddie) 2 (D, E) 1 (Chase, Damon, Eddie)
Fiona 2 (Alex, Ivy) 3 (George, Ivy, Justin) 4 (G, I, J, H) 1 (Fiona, George, Ivy)
Justin 1 (Fiona) 0 0 0

You could easily come up with more features, by looking farther than one or two
hops, by considering generic weight properties of the vertices or edges, and by
calculating in more sophisticated ways: computing average, maximum, or other func‐
tions. Because these are domain-independent features, we are not thinking about the
meaning of “person” or “friend.” We could change the object types to “computers” and
“sends data to.” Domain-independent features, however, may not be the right choice
for you if there are many types of edges with very different meanings.

Extracting Graph Features | 217

https://oreil.ly/gpam1002

1 Graphlets were first presented in Nataša Pržulj, Derek G. Corneil, and Igor Jurisi, “Modeling Interactome:
Scale-Free or Geometric?” Bioinformatics 20, no. 18 (December 2004): 3508–3515, https://doi.org/10.1093/
bioinformatics/bth436.

2 Anida Sarajlić, Noël Malod-Dognin, Ömer Nebil Yaveroğlu, and Nataša Pržulj, “Graphlet-Based Characteriza‐
tion of Directed Networks,” Scientific Reports 6 (2016), https://www.nature.com/articles/srep35098.

3 Mahmudur Rahman and Mohammad Al Hasan, “Link Prediction in Dynamic Networks using Graphlet,”
in Machine Learning and Knowledge Discovery in Databases, Proceedings, Part I, ed. Paolo Frasconi, Niels
Landwehr, Giuseppe Manco, Jilles Vreeken (Riva del Garda, Italy: European Conference, ECML PKDD:
2016), 394–409.

Graphlets
Another option for extracting domain-independent features is to use graphlets.1

Graphlets are small subgraph patterns that have been systematically defined so that
they include every possible configuration up to a maximum number of vertices.
Figure 10-3 shows all 72 graphlets for subgraphs up to five vertices (or nodes). Note
that the figure shows two types of identifiers: shape IDs (G0, G1, G2, etc.) and
graphlet IDs (1, 2, 3, etc.). Shape G1 encompasses two different graphlets: graphlet
1, when the reference vertex is on the end of the three-vertex chain, and graphlet 2,
when the reference vertex is in the middle.

Counting the occurrences of every graphlet pattern around a given vertex provides
a standardized feature vector that can be compared to any other vertex in any
graph. This universal signature lets you cluster and classify entities based on their
neighborhood structure for applications such as predicting the world trade dynamics
of a nation2 or link prediction in dynamic social networks like Facebook.3

Figure 10-3. Graphlets up to five vertices (or nodes) in size4 (see a larger version of this
figure at https://oreil.ly/gpam1003)

218 | Chapter 10: Graph-Powered Machine Learning Methods

https://doi.org/10.1093/bioinformatics/bth436
https://doi.org/10.1093/bioinformatics/bth436
https://www.nature.com/articles/srep35098
https://oreil.ly/gpam1003

4 Tijana Milenković and Nataša Pržulj, “Uncovering Biological Network Function via Graphlet
Degree Signatures,” Cancer Informatics 6, no. 10 (April 2008), https://www.researchgate.net/publica
tion/26510215_Przulj_N_Uncovering_Biological_Network_Function_via_Graphlet_Degree_Signatures.

A key rule for graphlets is that they are the induced subgraph for a set of vertices
within a graph of interest. Induced means that they include all the edges that the base
graph has among the selected set of vertices. This rule causes each particular set of
vertices to match at most one graphlet pattern.

For example, consider the four persons Fiona, George, Howard, and Ivy in Fig‐
ure 10-2. Which shape and graphlet do they match, if any? It’s shape G7, because
those four persons form a rectangle with one cross-connection. They do not match
shape G5, the square, because of that cross-connection between George and Ivy.
While we’re talking about that cross-connection, look carefully at the two graphlets
for shape G7, graphlets 12 and 13. Graphlet 13’s source node is located at one end
of the cross-connection, just as George and Ivy are. This means graphlet 13 is one
of their graphlets. Fiona and Howard are at the other corners of the square, which
don’t have the cross-connection. Therefore they have graphlet 12 in their graphlet
portfolios.

There is obviously some overlap between the ad hoc features we first talked about
(e.g., number of neighbors) and graphlets. Suppose a vertex A has three neighbors,
B, C, and D, as shown in Figure 10-4. However, we do not know about any other
connections. What do we know about vertex A’s graphlets?

1. It exhibits the graphlet 0 pattern three times. Counting the occurrences is1.
important.

2. Now consider subgraphs with three vertices. We can define three different sub‐2.
graphs containing A: (A, B, C), (A, B, D), and (A, C, D). Each of those three‐
somes satisfies either graphlet 2 or 3. Without knowing about the connections
among B, C, and D (the dotted-line edges in the figure), we cannot be more
specific.

3. Considering all four vertices, we might be tempted to say they match graphlet 7.3.
Since there might be other connections between B, C, and D, it might actually
be a different graphlet. Which one? Graphlet 11 if there’s one peripheral connec‐
tion, graphlet 13 if it’s two connections, or graphlet 14 if it’s all three possible
connections.

Extracting Graph Features | 219

https://www.researchgate.net/publication/26510215_Przulj_N_Uncovering_Biological_Network_Function_via_Graphlet_Degree_Signatures
https://www.researchgate.net/publication/26510215_Przulj_N_Uncovering_Biological_Network_Function_via_Graphlet_Degree_Signatures

5 These algorithms were introduced in Part 2: Analyze.

Figure 10-4. Immediate neighbors and graphlet implications

The advantage of graphlets is that they are thorough and methodical. Checking for all
graphlets up to five-node size is equal to considering all the details of the source ver‐
tex’s four-hop neighborhood. You could run an automated graphlet counter without
spending time and money to design custom feature extraction. The disadvantage of
graphlets is that they can require a lot of computational work, and it might be more
productive to focus on a more selective set of domain-dependent features. We’ll cover
these types of features shortly.

Graph algorithms
Here’s a third option for extracting domain-independent graph features: graph algo‐
rithms! In particular, the centrality and ranking algorithms that we discussed in
Part 2: Analyze work well because they systematically look at everything around a
vertex and produce a score for each vertex. Figure 10-5 and Figure 10-6 show the
PageRank and closeness centrality5 scores, respectively, for the graph presented earlier
in Figure 10-2. For example, Alex has a PageRank score of 0.15, while Eddie has a
PageRank score of 1. This tells us that Eddie is valued by his peers much more than
Alex. Eddie’s ranking is due not only to the number of connections but also to the
direction of edges. Howard, who like Eddie has two connections and is at the far end
of the rough “C” shape of the graph, has a PageRank score of only 0.49983 because
one edge comes in and the other goes out.

220 | Chapter 10: Graph-Powered Machine Learning Methods

Figure 10-5. PageRank scores for the friendship graph (see a larger version of this figure
at https://oreil.ly/gpam1005)

The closeness centrality scores in Figure 10-6 tell a completely different story. Alex
has a top score of 0.47368 because she is at the middle of the C. Damon and Howard
have scores at or near the bottom—0.11111 and 0.22222, respectively—because they
are at the ends of the C.

Extracting Graph Features | 221

https://oreil.ly/gpam1005

Figure 10-6. Closeness centrality scores for the friendship graph (see a larger version of
this figure at https://oreil.ly/gpam1006)

The main advantage of domain-independent feature extraction is its universality:
generic extraction tools can be designed and optimized in advance, and the tools can
be applied immediately on any data. Its unguided approach, however, can make it a
blunt instrument.

Domain-independent feature extraction has two main drawbacks. Because it doesn’t
pay attention to what types of edges and vertices it considers, it can group together
occurrences that have the same shape but have radically different meanings. The
second drawback is that it can waste resources computing and cataloging features that
have no real importance or no logical meaning. Depending on your use case, you may
want to focus on a more selective set of domain-dependent features.

Domain-Dependent Features
A little bit of domain knowledge can go a long way toward making your feature
extraction smarter and more efficient.

When extracting domain-dependent features, the first thing you want to do is pay
attention to the vertex types and edge types in your graph. It’s helpful to look at a
display of your graph’s schema. Some schemas break down information hierarchically

222 | Chapter 10: Graph-Powered Machine Learning Methods

https://oreil.ly/gpam1006

6 “[NeurIPS 2020] Data Science for COVID-19 (DS4C),” Kaggle, accessed May 25, 2023, https://www.kag
gle.com/datasets/kimjihoo/coronavirusdataset.

into graph paths, such as City-(IN)-State-(IN)-Country or Day-(IN)-Month-(IN)-
Year. This is a graph-oriented way of indexing and pregrouping data according to
location or date. This is the case in a graph model for South Korean COVID-19
contact-tracing data,6 shown in Figure 10-7. While city-to-country and day-to-
year are each two-hop paths, those paths are simply baseline information and do
not hold the significance of a two-hop path like Patient-(INFECTED_BY)-Patient-
(INFECTED_BY)-Patient.

You can see how the graphlet approach and other domain-independent approaches
can provide confusing results when you have mixed edge types. A simple solution
is to take a domain-semi-independent approach by considering only certain vertex
types and edge types when looking for features. For example, if looking for graphlet
patterns, you might want to ignore the Month vertices and their connecting edges. You
might still care about the year of birth of patients and the (exact) day on which they
traveled, but you don’t need the graph to tell you that each year contains 12 months.

Figure 10-7. Graph schema for South Korean COVID-19 contact-tracing data (see a
larger version of this figure at https://oreil.ly/gpam1007)

Extracting Graph Features | 223

https://www.kaggle.com/datasets/kimjihoo/coronavirusdataset
https://www.kaggle.com/datasets/kimjihoo/coronavirusdataset
https://oreil.ly/gpam1007

With this vertex- and edge-type awareness, you can refine some of the domain-
independent searches. For example, while you can run PageRank on any graph,
the scores will only have significance if all the edges have the same or relatively
similar meanings. It would not make sense to run PageRank on the entire COVID-19
contact-tracing graph because we can’t rank all the different vertex types and edge
types on one scale. It would make sense, however, to consider only the Patient
vertices and INFECTED_BY edges. PageRank would then tell you who was the most
influential Patient in terms of causing infection: patient zero, so to speak.

In this type of scenario, you also want to apply your understanding of the domain
to think of small patterns with two or more edges of specific types that indicate some‐
thing meaningful. For this COVID-19 contact-tracing schema, the most important
facts are Infection Status (InfectionCase), Who (Patient), Where (City and TravelE‐
vent), and When (Day_). Paths that connect these are important. A possible feature
is “number of travel events made by Patient P in March 2020.” A more specific
feature is “number of Infected Patients in the same city as Patient P in March 2020.”
That second feature is the type of question we posed in Part 2: Analyze. You’ll find
examples of vertex- and edge-type-specific PageRank and domain-dependent pattern
queries in the TigerGraph Cloud Starter Kit for COVID-19.

Let’s pause for a minute to reflect on your immediate goal for extracting these
features. Do you expect these features to directly point out actionable situations, or
are you building a collection of patterns to feed into a machine learning system?
The machine learning system could figure out which features matter, to what degree,
and in what combination. If you’re doing the latter, which is our focus for this
chapter, then you don’t need to build overly complex features. Instead, focus on
building-block features. Try to include some that provide a number (e.g., how many
travel events) or a choice among several possibilities (e.g., city most visited).

To provide a little more inspiration for using graph-based features, here are some
examples of domain-dependent features used in real-world systems to help detect
financial fraud:

• How many shortest paths are there between a loan applicant and a known fraud‐•
ster, up to a maximum path length (because very long paths represent negligible
risk)?

• How many times has the loan applicant’s mailing address, email address, or•
phone number been used by differently named applicants?

• How many charges has a particular credit card made in the last 10 minutes?•

While it is easy to see that high values on any of these measures make it more likely
that a situation involves financial misbehavior, our goal is to select the right features
and the right threshold values. Having the right tests for fraud cuts down on both
false negatives (missing cases of real fraud) and false positives (labeling a situation

224 | Chapter 10: Graph-Powered Machine Learning Methods

as fraud when it really isn’t). False positives are doubly damaging. They hurt the
business because they are rejecting an honest business transaction, and they hurt the
customer who has been unjustly labeled a crook.

Graph Embeddings: A Whole New World
Our last approach to feature extraction is graph embedding, a hot topic of recent
research and discussion. Some authorities may find it unusual that we are classifying
graph embedding as a type of feature extraction. Isn’t graph embedding a kind of
dimensionality reduction? Isn’t it representation learning? Isn’t it a form of machine
learning itself? All of those are true. Let’s first define a graph embedding.

An embedding is a representation of a topological object in a particular system such
that the properties we care about are preserved (or approximated well). The last part,
preserving the properties we care about, gets to the heart of why we use embeddings.
A well-chosen embedding makes it more convenient to see what we want to see.

Here are several examples to help illustrate the meaning of embeddings:

• The Earth is a sphere, but we print world maps on flat paper. The representation•
of the Earth on paper is an embedding. There are several different standard
representations or embeddings of the Earth as a map. Figure 10-8 shows some
examples.

• Prior to the late 2010s, when someone said “graph embedding,” they probably•
meant something like the Earth example. To represent all the connections in
a graph without edges touching one another, you often need three or more
dimensions. Whenever you see a graph on a flat surface, it’s an embedding, as
in Figure 10-9. Moreover, unless your data specifies the location of vertices, then
even a 3D representation is an embedding because it’s a particular choice about
the placement of the vertices. From a theoretical perspective, it actually takes up
to n − 1 dimensions to represent a graph with n vertices.

• In natural language processing (NLP), a word embedding is a sequence of scores•
(i.e., a feature vector) for a given word (see Figure 10-10). There is no natural
interpretation of the individual scores, but a machine learning program sets the
scores so that words that tend to occur near one another in training documents
have similar embeddings. For example, “machine” and “learning” might have
similar embeddings. A word embedding is not convenient for human use, but
it is very convenient for computer programs that need a computational way of
understanding word similarities and groupings.

Extracting Graph Features | 225

7 From John P. Snyder and Philip M. Voxland, “An Album of Map Projections,” second printing (US Geological
Survey Professional Paper 1453, 1994), https://pubs.usgs.gov/pp/1453/report.pdf.

Figure 10-8. Three embeddings of the Earth’s surface onto 2D space7

226 | Chapter 10: Graph-Powered Machine Learning Methods

https://pubs.usgs.gov/pp/1453/report.pdf

Figure 10-9. Some graphs can be embedded in 2D space without intersecting edges

Figure 10-10. Word embedding

In recent years, graph embedding has taken on a new meaning, analogous to word
embedding. We compute one or more feature vectors to approximate the graph’s
neighborhood structure. In fact, when people say “graph embedding,” they often
mean vertex embedding: computing a feature vector for each vertex in the graph. A
vertex’s embedding tells us something about how it connects to others. We can then
use the collection of vertex embeddings to approximate the graph, no longer needing
to consider the edges. There are also methods to summarize the whole graph as one
embedding. This is useful for comparing one graph to another. In this book, we will
focus on vertex embeddings.

Figure 10-11 shows an example of a graph (a) and portion of its vertex embedding
(b). The embedding for each vertex (a series of 32 numbers) describes the structure of
its neighborhood without directly mentioning any of its neighbors.

Extracting Graph Features | 227

8 This visualized partitioning comes from “Zachary’s Karate Club,” Wikipedia, April 5, 2017, https://en.wikipe
dia.org/wiki/File:Zachary%27s_karate_club.png.

Figure 10-11. (a) Karate club graph8 and (b) 64-element embedding for two of its
vertices

228 | Chapter 10: Graph-Powered Machine Learning Methods

https://en.wikipedia.org/wiki/File:Zachary%27s_karate_club.png
https://en.wikipedia.org/wiki/File:Zachary%27s_karate_club.png

Let’s return to the question of classifying graph embeddings. What graph embeddings
give us is a set of feature vectors. For a graph with a million vertices, a typical
embedding vector would be a few hundred elements long, a lot less than the upper
limit of one million dimensions. Therefore, graph embeddings represent a form of
dimensionality reduction. If we’re using graph embeddings to get feature vectors,
they’re also a form of feature extraction. As we will see, the methodology to generate
an embedding qualifies as machine learning, so they are also representation learning.

Does any feature vector qualify as an embedding? That depends on whether your
selected features are telling you what you want to know. Graphlets come closest to
the learned embeddings we are going to examine because of the methodical way they
deconstruct neighborhood relationships.

Random walk-based embeddings
One of the best-known approaches for graph embedding is to use random walks to
get a statistical sample of the neighborhood surrounding each vertex v. A random
walk is a sequence of connected hops in a graph G. The walk starts at some vertex
v. It then picks a random neighbor of v and moves there. It repeats this selection
of random neighbors until it is told to stop. In an unbiased walk, there is an equal
probability of selecting any of the outgoing edges.

Random walks are great because they are easy to do and they gather a lot of infor‐
mation efficiently. All feature extraction methods we have looked at before require
following careful rules about how to traverse the graph; graphlets are particularly
demanding due to their very precise definitions and distinctions from one another.
Random walks are carefree. Just go.

For the example graph in Figure 10-12, suppose we start a random walk at vertex A.
There is an equal probability of one in three that we will next go to vertex B, C, or
D. If you start the walk at vertex E, there is a 100% chance that the next step will be
to vertex B. There are variations of random-walk rules with the possibility of staying
in place, reversing your last step, jumping back to the start, or jumping to a random
vertex.

Extracting Graph Features | 229

9 See the article by Perozzi, Al-Rfou, and Skiena https://dl.acm.org/doi/abs/10.1145/2623330.2623732.
10 See the article by Mikolov, Sutskever, Chen, Corrado, and Dean https://arxiv.org/abs/1310.4546.

Figure 10-12. An ordinary graph for leisurely walks

Each walk can be recorded as a list of vertices, in the order in which they were visited.
A-D-H-G-C is a possible walk. You can think of each walk as a signature. What does
the signature tell us? Suppose that walk W1 starts at vertex 5 and then goes to 2. Walk
W2 starts at vertex 9 and then goes to 2. Now they are both at 2. From here on, they
have exactly the same probabilities for the remainder of their walks. Those individual
walks are unlikely to be the same, but if there is a concept of a “typical walk” averaged
over a sampling of several walks, then, yes, the signatures of 5 and 9 would be similar.
All because 5 and 9 share a neighbor 2. Moreover, the “typical walk” of vertex 2 itself
would be similar, except offset by one step.

It turns out that these random walks gather neighborhood information much in
the same way that SimRank and RoleSim gather theirs. The difference is that those
role similarity algorithms considered all paths (by considering all neighbors), which
is computationally expensive. Let’s take a look at two random-walk-based graph
embedding algorithms that use a completely different computational method, one
borrowed from neural networks.

DeepWalk
The DeepWalk algorithm9 collects k random walks of length λ for every vertex in the
graph. If you happen to know the word2vec algorithm10, the rest is easy. Treat each
vertex like a word and each walk like a sentence. Pick a window width w for the
skip-grams and a length d for your embedding. You will end up with an embedding
(latent feature vector) of length d for each vertex. The DeepWalk authors found that
having walk count k = 30, walk length λ = 40, window width w = 10, and embedding

230 | Chapter 10: Graph-Powered Machine Learning Methods

https://dl.acm.org/doi/abs/10.1145/2623330.2623732
https://arxiv.org/abs/1310.4546

length d = 64 worked well for their test graphs. Your results may vary. Figure 10-13(a)
shows an example of a random walk, starting at vertex C and with a length of 16,
which is 15 steps or hops from the starting point. The shadings will be explained
when we explain skip-grams.

Figure 10-13. (a) Random walk vector and (b) a corresponding skip-gram

We assume you don’t know word2vec, so we’ll give a high-level explanation, enough
so you can appreciate what is happening. This is the conceptual model. The actual
algorithm plays a lot of statistical tricks to speed up the work. First, we construct a
simple neural network with one hidden layer, as shown in Figure 10-14. The input
layer accepts vectors of length n, where n = number of vertices. The hidden layer
has length d, the embedding length, because it is going to be learning the embedding
vectors. The output layer also has length n.

Figure 10-14. Neural network for DeepWalk

Extracting Graph Features | 231

Each vertex needs to be assigned a position in the input and output layer. For
example, vertex A is at position 1, vertex B is at position 2, and so on. Between
the layers are two meshes of n × d connections, from each element in one layer to
each element in the next layer. Each edge has a random weight initially, but we will
gradually adjust the weights of the first mesh.

Start with one walk for one starting vertex. At the input, we represent the vertex using
one-hot encoding. The vector element that corresponds to the starting vertex is set to
1; all other elements are set to 0. We are going to train this neural network to predict
the neighborhood of the vertex given at the input.

Applying the weights in the first mesh to our one-hot input, we get a weighted vertex
in the hidden layer. This is the current guess for the embedding of the input vertex.
Take the values in the hidden layers and multiply by the weights of the second mesh
to get the output layer values. You now have a length-n vector with random weights.

We’re going to compare this output vector with a skip-gram representation of the walk.
This is where we use the window parameter w. For each vertex in the graph, count
how many times it appears within w-steps before or after the input vertex v. We’ll
skip the normalization process, but your final skip-gram vector expresses the relative
likelihood that each of the n vertices is near vertex v in this walk. Now we’ll explain
the result of Figure 10-13. Vertex C was the starting point for the random walk; we’ve
used dark shading to highlight every time we stepped on vertex C. The light shading
shows every step that is within w = 2 steps of vertex C. Then, we form the skip-gram
in (b) by counting how many times we set foot on each vertex within the shaded zones.
For example, vertex G was stepped on twice, so the skip-gram has 2 in the position for
G. This is a long walk on a small graph, so most vertices were stepped on within the
windows. For short walks on big graphs, most of the values will be 0.

Our output vector was supposed to be a prediction of this skip-gram. Comparing
each position in the two vectors, if the output vector’s value is higher than the
skip-gram’s value, then reduce the corresponding weight in the input mesh will be
lower. If the value is lower, then raise the corresponding weight.

You’ve processed one walk. Repeat this for one walk of each vertex. Now repeat for a
second walk of each vertex, until you’ve adjusted your weights for k × n walks. You’re
done! The weights of the first n × d mesh are the length-d embeddings for your n
vectors. What about the second mesh? Strangely, we were never going to directly use
the output vectors, so we didn’t bother to adjust its weight.

Here is how to interpret and use a vertex embedding:

• For neural networks in general, you can’t point to a clear real-world meaning of•
the individual elements in the latent feature vector.

232 | Chapter 10: Graph-Powered Machine Learning Methods

• Based on how we trained the network, though, we can reason backward from•
the skip-grams, which represent the neighbors around a vertex: vertices that have
similar neighborhoods should have similar embeddings.

• If you remember the example earlier about two paths that were offset by one step,•
note that those two paths would have very similar skip-grams. So vertices that are
close to one another should have similar embeddings.

One critique of DeepWalk is that its uniformly random walk is too random. In
particular, it may wander far from the source vertex before getting an adequate
sample of the neighborhoods closer to the source. One way to address that is to
include a probability of resetting the walk by magically teleporting back to the source
vertex and then continuing with random steps again, as shown in Zhou, Wu, and Tan.
This is known as “random walk with restart.”

Node2vec
An interesting extension of the random walk is node2vec. It uses the same skip-gram
training process as DeepWalk, but it gives the user two adjustment parameters to
control the direction of the walk: go farther (depth), go sideways (breadth), or go
back a step. Farther and back seem obvious, but what exactly does sideways mean?

Suppose we start at vertex A of the graph in Figure 10-15. Its neighbors are vertices
B, C, and D. Since we are just starting, any of the choices would be moving forward.
Let’s go to vertex C. For the second step, we can choose from any of vertex C’s
neighbors: A, B, F, G, or H.

Figure 10-15. Illustrating the biased random walk with memory used in node2vec

If we remember what our choices were in our previous step, we can classify our cur‐
rent set of neighbors into three groups: back, sideways, and forward. We also assign

Extracting Graph Features | 233

https://oreil.ly/3YiLc
https://oreil.ly/GoPWK

a weight to each connecting edge, which represents the unnormalized probability of
selecting that edge.

Back
In our example: vertex A. Edge weight = 1/p.

Sideways
These are the vertices that were available in the last step and are also available in
this step. They represent a second chance to visit a different neighbor of where
you were previously. In our example: vertex B. Edge weight = 1.

Forward
There are all the vertices that don’t go back or sideways. In our example: vertices
F, G, and H. Edge weight = 1/q.

If we set p = q = 1, then all choices have equal probability, so we’re back to an
unbiased random walk. If p < 1, then returning is more likely than going sideways.
If q < 1, then each of the forward (depth) options is more likely than sideways
(breadth). Returning also keeps the walk closer to home (e.g., similar to breadth-first-
search), because if you step back and then step forward randomly, you are trying out
the different options in your previous neighborhood.

This ability to tune the walk makes node2vec more flexible than DeepWalk, which
results in better models, in many cases, in exchange for higher computational cost.

Besides the random-walk approach, there are several other techniques for graph
embedding, each with their advantages and disadvantages: matrix factorization, edge
reconstruction, graph kernel, and generative models. FastRP and NodePiece show
a promising balance of real-world efficiency and accuracy. Though already a little
dated, Hongyun Cai, Vincent W. Zheng, and Kevin Chen-Chuan Chang’s A Compre‐
hensive Survey of Graph Embedding: Problems, Techniques, and Applications provides
a thorough overview with several accessible tables, which compare the features of
different techniques. Ilya Makarov, Dmitrii Kiselev, Nikita Nikitinsky, and Lovro
Subelj have a more recent survey on graph embeddings.

Graphs can provide additional and valuable features to describe and understand your
data. Key takeaways from this section are as follows:

• A graph feature is a characteristic that is based on the pattern of connections in•
the graph.

• Graphlets and graph algorithms such as centrality provide domain-independent•
features for any graph.

• Applying some domain knowledge to guide your feature extraction leads to more•
meaningful features.

234 | Chapter 10: Graph-Powered Machine Learning Methods

https://oreil.ly/QhbWl
https://oreil.ly/r6FZ5
https://oreil.ly/bIKdV
https://oreil.ly/bIKdV
https://oreil.ly/3FxLA

• Machine learning can produce vertex embeddings, which encode vertex similar‐•
ity and proximity in terms of compact feature vectors.

• Random walks are a simple way to sample a vertex’s neighborhood.•

Graph Neural Networks
In the popular press, it’s not AI unless it uses a neural network, and it’s not machine
learning unless it uses deep learning. Neural networks were originally designed to
emulate how the human brain works, but they evolved to address the capabilities of
computers and mathematics. The predominant models assume that your input data is
in a matrix or tensor; it’s not clear how to present and train the neural network with
interconnected vertices. But are there graph-based neural networks? Yes!

Graph neural networks (GNNs) are conventional neural networks with an added
twist for graphs. Just as there are several variations of neural networks, there are
several variations of GNNs. The simplest way to include the graph itself into the
neural network is through convolution.

Graph Convolutional Networks
In mathematics, convolution is how two functions affect the result if one acts on the
other in a particular way. It is often used to model situations in which one function
describes a primary behavior and another function describes a secondary effect. For
example, in image processing, convolution takes into account neighboring pixels to
improve identification of boundaries and to add artificial blur. In audio processing,
convolution is used to both analyze and synthesize room reverberation effects. A
convolutional neural network (CNN) is a neural network that includes convolution
in the training process. For example, you could use a CNN for facial recognition. The
CNN would systematically take into account neighboring pixels, an essential duty
when analyzing digital images.

A graph convolutional network (GCN) is a neural network that uses graph traversal
as a convolution function during the learning process. While there were some earlier
related works, the first model to distill the essence of graph convolution into a
simple but powerful neural network was presented in 2017 in Thomas Kipf and Max
Welling’s “Semi-Supervised Classification with Graph Convolutional Networks”.

For graphs, we want the embedding for each vertex to include information about the
relationships to other vertices. We can use the principle of convolution to accomplish
this. Figure 10-16 shows a simple convolution function, with a general model at top
and a more specific example at bottom.

Graph Neural Networks | 235

https://oreil.ly/b14rL

Figure 10-16. Convolution using neighbors of a vertex

In part (a) of the figure, the primary function is Features(v): given a vertex v, output
its feature vector. The convolution combines the features of v with the features of all
of the neighbors of v: u1, u2,...,uN. If the features are numeric, a simple convolution
would be adding them. The result is the newly convolved features of v. In part (b),
we set v = D from Figure 10-15. Vertex D has two neighbors, A and H. We insert
one more step after summing the feature vectors: divide by the degree of the primary
vertex. Vertex D has 2 neighbors, so we divide by 2. This regularizes the output values
so that they don’t keep getting bigger and bigger. (Yes, technically we should divide by
deg(v) + 1, but the simpler version seems to be good enough.)

Let’s do a quick example:

features[0](D) = [3, 1 ,4, 1]
features[0](A) = [5, 9, 2, 6]
features[0](H) = [5, 3, 5, 8]
features[1](D) = [6.5, 6.5, 5.5, 7.5]

By having neighbors share their feature values, this simple convolution function
performs selective information sharing: it determines what is shared (features) and by
whom (neighbors). A neural network that uses this convolution function will tend to
evolve according to these maxims:

• Vertices that share many neighbors will tend to be similar.•
• Vertices that share the same initial feature values will tend to be similar.•

These properties are reminiscent of random-walk graph embeddings.

236 | Chapter 10: Graph-Powered Machine Learning Methods

How do we take this convolution and integrate it into a neural network? Take a look
at Figure 10-17.

Figure 10-17. Two-layer graph convolutional network

This two-layer network flows from left to right. The input is the feature vectors for all
of the graph’s vertices. If the feature vectors run horizontally and we stack the vertices
vertically, then we get an n × f matrix, where f is the number of features. Next, we
apply the adjacency-based convolution. We then apply a set of randomized weights
(similar to what we did with random-walk graph embedding networks) to merge and
reduce the features to an embedding of size h1. Typically h1 < f. Before storing the
values in the embedding matrix, we apply an activation function (indicated by the
blocky “S” in a circle), which acts as a filter/amplifier. Low values are pushed lower,
and high values are pushed higher. Activation functions are used in most neural
networks.

Because this is a two-layer network, we repeat the same steps. The only differences
are that this embedding may have a different size, where typically h2 ≤ h1, and this
weight mesh has a different set of random weights. If this is the final layer, then it’s
considered the output layer with the output results. By having two layers, the output
embedding for each vertex takes into account the neighbors within two hops. You can
add more layers to consider deeper neighbors. Two or three layers often provide the
best results. With too many layers, the radius of each vertex’s neighborhood becomes
so large that it overlaps significantly even with the neighborhoods of unrelated
vertices.

Graph Neural Networks | 237

Our example here is demonstrating how a GCN can be used in unsupervised learning
mode. No training data or target function was provided; we just merged features
of vertices with their neighbors. Surprisingly, you can get useful results from an
unsupervised, untrained GCN. The authors of GCN experimented with a three-layer
untrained GCN, using the well-known Karate Club dataset. They set the output
layer’s embedding length of two, so that they could interpret the two values as coordi‐
nate points. When plotted, the output data points showed community clustering that
matched the known communities in Zachary’s Karate Club.

The GCN architecture is general enough to be used for unsupervised, supervised,
semisupervised, or even reinforcement learning. The only difference between a GCN
and a vanilla feed-forward neural network is the addition of the step to aggregate
the features of a vector with those of its neighbors. Figure 10-18 shows a generic
model for how neural networks tune their weights. The graph convolution in GCN
affects only the block labeled Forward Propagation Layers. All of the other parts
(input values, target values, weight adjustment, etc.) are what determine what type of
learning you are doing. That is, the type of learning is decided independently from
your use of graph convolution.

Figure 10-18. Generic model for responsive learning in a neural network

Attention neural networks use a more advanced form of feedback and adjustment.
The details are beyond the scope of this book, but graph attention neural networks
(GATs) can tune the weight (aka focus the attention) of each neighbor when adding
them together for convolution. That is, a GAT performs a weighted sum instead of
a simple sum of a neighbor’s features, and the GAT trains itself to learn the best
weights. When applied to the same benchmark tests, GAT outperforms GCN slightly.

Matrix Algebra Formulation
If you like to think in terms of matrices, we can express the convolution process in
terms of three simple, standard matrices for any graph: the adjacency matrix A, the

238 | Chapter 10: Graph-Powered Machine Learning Methods

identity matrix I, and the degree matrix D. (Feel free to skip this section if this doesn’t
sound like you.)

Matrix A expresses the connectivity of the graph. Number the vertices 1 to n, and
number the rows and columns similarly. The value A(i, j) = 1 if there is an edge from
vertex i to vertex j; otherwise A(i,j) is 0. The identity matrix says, “I am myself.” I(i, j)
= 1 if i = j; otherwise it is 0. It looks like a diagonal line from upper left to lower right.
The matrix in Figure 10-19 is (A + I). In each row i, the 1’s tell us the convolution
function for vertex i.

Figure 10-19. A graph and matrix representing the graph’s adjacency and identity: (A+I)

What about the regularization? With matrices, when we want to perform division, we
instead multiply by the inverse matrix. The matrix we want is the degree matrix D,
where D(i, j) = degree(i) if i = j; otherwise it is 0. The degree matrix of the graph of
Figure 10-12 is shown in the left half of Figure 10-20. At the right is the inverse matrix
D-1.

Figure 10-20. The degree matrix D and itself inverse matrix D-1

We can express the computation from layer H0 to the next layer H1 as follows:

H1 = σ D−1 A + 1 H0W1

Graph Neural Networks | 239

where σ is the activation function and W is the weight mesh. In Kipf and Welling’s
paper, they made a tweak to provide a more balanced regularization:

H1 = σ D−1/2 A + 1 D−1/2H0W1

GraphSAGE
One limitation of the basic GCN model is that it does a simple averaging of vertex
plus neighbor features. It seems we would want some more control and tuning of this
convolution. Also, large variations in the number of neighbors for different vertices
may lead to training difficulties. To address this limitation, William Hamilton, Rex
Ying, and Jure Leskovec presented GraphSAGE in 2017 in their paper “Inductive
Representation Learning on Large Graphs”. Like GCN, this technique also combines
information from neighbors, but it does it a little differently. To standardize the learn‐
ing from neighbors, GraphSAGE samples a fixed number of neighbors from each
vertex. Figure 10-21 shows a block diagram of GraphSAGE, with sampled neighbors.

Figure 10-21. Block diagram of GraphSAGE

With GraphSAGE, the features of the neighbors are combined according to a
chosen aggregation function. The function could be addition, as in GCNs. Any

240 | Chapter 10: Graph-Powered Machine Learning Methods

https://oreil.ly/YTlH9
https://oreil.ly/YTlH9

order-independent aggregation function could be used; long short-term memory
(LSTM) with random ordering and max-pooling work well. The source vertex is not
included in the aggregation as it is in GCN; instead, the aggregated feature vectors
and the source vertex’s feature vector are concatenated to make a double-length
vector. We then apply a set of weights to mix the features together, apply an activation
function, and store as the next layer’s representation of the vertices. This series of
sets constitutes one layer in the neural network and the gathering of information
within one hop of each vertex. A GraphSAGE network has k layers, each with its
own set of weights. GraphSAGE proposes a loss function that rewards nearby vertices
if they have similar embeddings and rewards distant vertices if they have dissimilar
embeddings.

Besides training on the full graph, as you would with GCN, you can train Graph
SAGE with only a sample of the vertices and their neighborhoods. The fact that
GraphSAGE’s aggregation functions use equal-sized samples of neighborhoods means
that it doesn’t matter how you arrange the inputs. That freedom of arrangement is
what allows you to train with one sample and then test or deploy with a different
sample. Because it builds a model based on these generalized graph neighborhood
properties, GraphSAGE performs inductive learning. That is, the model can be used to
make predictions about new vertices that were not in the original dataset. In contrast,
GCN directly uses the adjacency matrix, which forces it to use the full graph with
the vertices arranged in a particular order. Training with the full data and learning a
model for only that data is transductive learning.

Whether or not learning from a sample will work on your particular graph depends
on whether your graph’s structure and features follow global trends, such that a
random subgraph looks similar to another subgraph of similar size. For example, one
part of a forest may look a lot like another part of a forest. For a graph example,
suppose you have a Customer 360 graph including all of a customer’s interactions
with your sales team, website, and events, their purchases, and all other profile
information you have been able to obtain. Last year’s customers are rated based on
the total amount and frequency of their purchases. It is reasonable to expect that
if you used GraphSAGE with last year’s graph to predict the customer rating, it
should do a decent job of predicting the ratings of this year’s customers. Table 10-2
summarizes all the similarities and differences between GCN and GraphSAGE that
we have presented.

Graph Neural Networks | 241

Table 10-2. Comparison of GCN and GraphSAGE traits

 GCN GraphSAGE
Neighbors for aggregation All Sample of n neighbors
Aggregation function Mean Several options
Aggregating a vertex with neighbors? Aggregated with others Concatenated to others
Do weights need to be learned? Not for unsupervised transductive model Yes, for inductive model
Supervised? Yes Yes
Self-supervised? With modification With modification
Can be trained on a sample of vertices No Yes

Graph-based neural networks put graphs into the mainstream of machine learning.
Key takeaways from this section are as follows:

• The graph convolutional neural network enhances the vanilla neural network by•
averaging together the feature vectors of each vertex’s neighbors with its own
features during the learning process.

• GraphSAGE makes two key improvements to the basic GCN: vertex and neigh‐•
borhood sampling, and keeping features of vectors separate from those of its
neighbors.

• GCN learns transductively (uses the full data to learn only about that data),•
whereas GraphSAGE learns inductively (uses a data sample to learn a model that
can apply to other data samples).

• The modular nature of neural networks and graph enhancements means that the•
ideas of GCN and GraphSAGE can be transferred to many other flavors of neural
networks.

Comparing Graph Machine Learning Approaches
This chapter has covered many different ways to learn from graph data, but it only
scratched the surface. Our goal was not to present an exhaustive survey but to
provide a framework from which to continue to grow. We’ve outlined the major
categories of and techniques for graph-powered machine learning, we’ve described
what characterizes and distinguishes them, and we’ve provided simple examples to
illustrate how they operate. It’s worthwhile to briefly review these techniques. Our
goal here is not only to summarize but also to provide you with guidance for selecting
the right techniques to help you learn from your connected data.

242 | Chapter 10: Graph-Powered Machine Learning Methods

Use Cases for Machine Learning Tasks
Table 10-3 pulls together examples of use cases for each of the major learning tasks.
These are the same basic data mining and machine learning tasks you might perform
on any data, but the examples are particularly relevant for graph data.

Table 10-3. Use cases for graph data learning tasks

Task Use case examples
Community detection Delineating social networks

Finding a financial crime network
Detecting a biological ecosystem or chemical reaction network
Discovering a network of unexpectedly interdependent components or processes, such as
software procedures or legal regulations

Similarity Abstraction of physical closeness, inverse of distance
Prerequisite for clustering, classification, and link prediction
Entity resolution: finding two online identities that probably refer to the same real-world person
Product recommendation or suggested action
Identifying persons who perform the same role in different but analogous networks

Find unknown patterns Identifying the most common “customer journeys” on your website or in your app
Once current patterns are identified, then noticing changes

Link prediction Predicting someone’s future purchase or willingness to purchase
Predicting that a business or personal relationship exists, even though it is not recorded in the
data

Feature extraction Enriching your customer data with graph features, so that your machine learning training to
categorize and model your customers will be more successful

Embedding Transforming a large set of features to a more compact set, for more efficient computation
Holistically capturing a neighbor’s signature without designing specific feature extraction queries

Classification
(predicting a category)

Given some past examples of fraud, creating a model for identifying new cases of fraud
Predicting categorical outcomes for future vaccine patients, based on test results of past patients

Regression (predicting a
numerical value)

Predicting weight loss for diet program participants, based on results of past participants

Once you have identified what type of task you want to perform, consider the
available graph-based learning techniques, what they provide, and their key strengths
and differences.

Comparing Graph Machine Learning Approaches | 243

Pattern Discovery and Feature Extraction Methods
Table 10-4 lists the graph algorithms and feature extraction methods we encountered
both in this chapter and in Chapter 6.

Table 10-4. Pattern discovery and feature extraction methods in graphs

Task Graph-based learning
methods

Comments

Community detection Connected components One connection to the community is enough
k-core At least k connections to other community members
Modularity optimization
(e.g., Louvain)

Relatively higher density of connections inside than between
communities

Similarity Jaccard neighborhood
similarity

Counts how many relationships in common, for nonnumerical data

Cosine neighborhood
similarity

Compares numeric or weighted vectors of relationships

Role similarity Defines similarity recursively as having similar neighbors
Find unknown patterns Frequent pattern mining Starts with small patterns and builds to larger patterns
Domain-independent
feature extraction

Graphlets Systematic list of all possible neighborhood configurations
PageRank Rank is based on the number and rank of in-neighbors, for directed

graphs among vertices of the same type
Closeness centrality Closeness = average distance to any other vertex
Betweenness centrality How often a vertex lies on the shortest path between any two

vertices; slow to compute
Domain-dependent
feature extraction

Search for patterns
relevant to your domain

Custom effort by someone with domain knowledge

Dimensionality reduction
and embedding

DeepWalk Embeddings will be similar if the vectors have similar random
walks, considering nearness and role; more efficient than SimRank

node2vec DeepWalk with directional tuning of the random walks, for greater
tuning

Graph Neural Networks: Summary and Uses
The graph neural networks presented in this chapter not only are directly useful
in many cases but are also templates to show more advanced data scientists how
to transform any neural network technique to include graph connectivity in the
training. The key is the convolution step, which takes the features of neighboring
vertices into account. All of the GNN approaches presented can be used for either
unsupervised or supervised learning. Table 10-5 compares graph neural network
methods.

244 | Chapter 10: Graph-Powered Machine Learning Methods

Table 10-5. Summary of three types of graph neural networks

Name Description Uses
Graph convolutional
network (GCN)

Convolution: average of neighbor’s
features

Clustering or classification on a particular graph

GraphSAGE Convolution: average of a sample
of neighbor’s features

Learning a representative model on a sample of a graph, in
addition to clustering or classification

Graph attention neural
network (GAT)

Convolution: weighted average of
neighbor’s features

Clustering, classification, and model learning; added tuning
and complexity by learning weights for the convolution

Chapter Summary
Graphs and graph-based algorithms contribute to several stages of the machine
learning pipeline: data acquisition, data exploration and pattern discovery, data prep‐
aration, feature extraction, dimensionality reduction, and model training. As data
scientists know, there is no golden ticket, no single technique that solves all their
problems. Instead, you work to acquire tools for your toolkit, develop the skills to use
your tools well, and gain an understanding about when to use them.

Chapter Summary | 245

1 “Video Streaming Market Size Worth $416.84 Billion by 2030,” Grand View Research, March 2023, https://
www.grandviewresearch.com/press-release/global-video-streaming-market.

2 “Video Streaming (SVoD) – Worldwide,” Statista, accessed May 26, 2023, https://www.statista.com/out
look/dmo/digital-media/video-on-demand/video-streaming-svod/worldwide.

3 “Video Streaming Market Size Worth $416.84 Billion by 2030,” Grand View Research.

CHAPTER 11

Entity Resolution Revisited

This chapter uses entity resolution for a streaming video service as an example of
unsupervised machine learning with graph algorithms. After completing this chapter,
you should be able to:

• Name the categories of graph algorithms that are appropriate for entity resolu‐•
tion as unsupervised learning

• List three different approaches for assessing the similarity of entities•
• Understand how parameterized weights can adapt entity resolution to be a super‐•

vised learning task
• Interpret a simple GSQL FROM clause and have a general understanding of ACCUM•

semantics
• Set up and run a TigerGraph Cloud Starter Kit using GraphStudio•

Problem: Identify Real-World Users and Their Tastes
The streaming video on demand (SVoD) market is big business. Accurate estimates of
the global market size are hard to come by, but the most conservative estimate may
be $50 billion in 2020,1 with annual growth rates ranging from 11%2 to 21%3 for the
next five years or so. Movie studios, television networks, communication networks,

247

https://www.grandviewresearch.com/press-release/global-video-streaming-market
https://www.grandviewresearch.com/press-release/global-video-streaming-market
https://www.statista.com/outlook/dmo/digital-media/video-on-demand/video-streaming-svod/worldwide
https://www.statista.com/outlook/dmo/digital-media/video-on-demand/video-streaming-svod/worldwide

and tech giants have been merging and reinventing themselves, in hopes of becoming
a leader in the new preferred format for entertainment consumption: on-demand
digital entertainment, on any video-capable device.

To succeed, SVoD providers need to have the content to attract and retain many
millions of subscribers. Traditional video technology (movie theaters and broadcast
television) limited the provider to offering only one program at a time per venue or
per broadcast region. Viewers had very limited choice, and providers selected content
that would appeal to large segments of the public. Home video on VHS tape and
DVD introduced personalization. Wireless digital video on demand on any personal
device has put the power in the hands of the consumer.

Providers no longer need to appeal to the masses. On the contrary, the road to
success is microsegmentation: to offer something for everyone. The SVoD giants are
assembling sizable catalogs of existing content, as well as spending billions of dollars
on new content. The volume of options creates several data management problems.
With so many shows available, it is very hard for users to browse. Providers must
categorize the content, categorize users, and then recommend shows to users. Good
recommendations increase viewership and satisfaction.

While predicting customers’ interests is hard enough, the streaming video industry
also needs to overcome a multifaceted entity resolution problem. Entity resolution,
you may recall, is the task of identifying two or more entities in a dataset that
refer to the same real-world entity and then linking or merging them together.
In today’s market, streaming video providers face at least three entity resolution
challenges. First, each user may have multiple different authorization schemes, one
for each type of device they use for viewing. Second, corporate mergers are common,
and they require merging the databases of the constituent companies. For example,
Disney+ combines the catalogs of Disney, Pixar, Marvel, and National Geographic
Studios. Max brings together HBO, Warner Bros., DC Comics, and Discovery. Third,
SVoD providers may form a promotional, affiliate, or partnership arrangement with
another company: a customer may be able to access streaming service A because they
are a customer of some other service B. For example, customers of Verizon internet
service may qualify for free Disney+, Hulu, and ESPN+ service.

248 | Chapter 11: Entity Resolution Revisited

Solution: Graph-Based Entity Resolution
Before we can design a solution, let’s start with a clear statement of the problem we
want to solve.

Problem Statement

Each real-world user may have multiple digital identities. The goal
is to discover the hidden connections between these digital identi‐
ties and then to link or merge them together. By doing so, we will
be able to connect all of the information together, forming a more
complete picture of the user. In particular, we will know all the vid‐
eos that a person has watched so we can get a better understanding
of their personal taste and make better recommendations.

Now that we’ve crafted a clear problem statement, let’s consider a potential solution:
entity resolution. Entity resolution has two parts: deciding which entities are proba‐
bly the same and then resolving entities. Let’s look at each part in turn.

Learning Which Entities Are the Same
If we are fortunate enough to have training data showing us examples of entities
that are in fact the same, we can use supervised learning to train a machine learning
model. In this case, we do not have training data. Instead, we will rely on the
characteristics of the data itself, looking at similarities and communities to perform
unsupervised learning.

To do a good job, we want to build in some domain knowledge. What are the
situations for a person to have multiple online identities, and what would be the clues
in the data? Here are some reasons why a person may create multiple accounts:

• A user creates a second account because they forgot about or forgot how to•
access the first one.

• A user has accounts with two different streaming services, and the companies•
enter a partnership or merge.

• A person may intentionally set up multiple distinct identities, perhaps to take•
advantage of multiple membership rewards or to separate their behavioral pro‐
files (e.g., to watch different types of videos on different accounts). The personal
information may be very different, but the device IDs might be the same.

Solution: Graph-Based Entity Resolution | 249

Whenever the same person creates two different accounts at different moments, there
can be variations in some details for trivial or innocuous reasons. The person decides
to use a nickname. They choose to abbreviate a city or street name. They mistype.
They have multiple phone numbers and email addresses to choose from, and they
make a different choice for no particular reason. Over time, more substantial changes
may occur to the address, phone number, device IDs, and even the user’s name.

While several situations can result in one person having multiple online identities,
it seems we can focus our data analysis on only two patterns. In the first pattern,
most of the personal information will be the same or similar, but a few attributes may
differ. Even when two attributes differ, they may still be related. An example is the
use of a nickname or a misspelling of an address. In the second pattern, much of the
information is different, but one or more key pieces remain the same, such as home
phone number or birthdate, and behavioral clues (such as what type of videos they
like and what time of day they watch them) may suggest that two identities belong to
the same person.

To build our solution, we will need to use some similarity algorithms and also a
community detection or clustering algorithm to group similar entities together.

Resolving Entities
Once we have used the appropriate algorithms to identify a group of entities that we
believe to be the same, what will we do about it? We want to update the database
somehow to reflect this new knowledge. There are two possible ways to accomplish
this: merge the group into one entity or link the entities in a special way so that
whenever we look at one member of the group, we will readily see the other related
identities.

Merging the entities makes sense when some online identities are considered incor‐
rect, so we want to eliminate them. For example, suppose a customer has two online
accounts because they misspelled their name or forgot that they had an account
already. Both the business owner and the customer want to eliminate one account
and to merge all of the records (purchase history, game scores, etc.) into one account.
Knowing which account to eliminate takes more knowledge of each specific case than
we have in our example.

Alternatively, one can simply link entities together. Specifically, make use of two types
of entities in the graph: one representing digital identities and the other representing
real-world entities. After resolution, the database will show one real-world entity
having an edge to each of its digital identities, as illustrated in Figure 11-1.

250 | Chapter 11: Entity Resolution Revisited

Figure 11-1. Digital entities linked to a real-world entity after resolution

Implementing Graph-Based Entity Resolution
The implementation of graph-based entity resolution we will present is available as
a TigerGraph Cloud Starter Kit. As usual, we will focus on using the GraphStudio
visual interface. All of the necessary operations could also be performed from a
command-line interface.

The In-Database Entity Resolution Starter Kit
Using TigerGraph Cloud, deploy a new cloud instance and select “In-Database
Machine Learning for Big Data Entity Resolution” as the use case. Once this starter
kit is installed, load the data following the steps listed in the section “Load data and
install queries for a starter kit” on page 50 in Chapter 3.

Graph Schema
Looking at the graph schema shown in Figure 11-2, you can see that Account,
User, and Video are hub vertices, with several edges radiating from them. The other
vertices represent the personal information about users and the characteristics of
videos. We want to compare the personal information of different users. Following
good practice for graph-oriented analytics, if we want to see if two or more entities
have a feature in common (e.g., email address), we model that feature as a vertex
instead of as a property of a vertex.

Implementing Graph-Based Entity Resolution | 251

Figure 11-2. Graph schema for video customer accounts (see a larger version of this
figure at https://oreil.ly/gpam1102)

Table 11-1 gives a brief explanation of each of the vertex types in the graph model.
Though the starter kit’s data contains much data about videos, we will not focus on
the videos themselves in this exercise. We are going to focus on entity resolution of
Accounts.

252 | Chapter 11: Entity Resolution Revisited

https://oreil.ly/gpam1102

Table 11-1. Vertex types in the graph model

Vertex type Description
Account An account for a SVoD user, a digital identity

User A real-world person. One User can link to multiple Accounts
IP, Email, Last_Name, Phone,
Address, Device

Key attributes of an Account, represented as vertices to facilitate linking
Accounts/Users that share a common attribute

Video A video title offered by an SVoD

Keyword, Genre Attributes of a Video
Video_Play_Event The time and duration of a particular Account viewing a particular Video
Weight Similarity model parameters

Queries and Analytics
For our entity resolution use case, we have a three-stage plan requiring three or more
queries:

1. Initialization: For each Account vertex, create a User vertex and link them.1.
Accounts are online identities, and Users represent real-world persons. We begin
with the hypothesis that each Account is a real person.

2. Similarity detection: Apply one or more similarity algorithms to measure the2.
similarity between User vertices. If we consider a pair to be similar enough, then
we create a link between them, using the SameAs edge type shown in Figure 11-2.

3. Merging: Find the connected components of linked User vertices. Pick one of3.
them to be the main vertex. Transfer all of the edges of the other members of the
community to the main vertex. Delete the other community vertices.

For reasons we will explain when we talk about merging, you may need to repeat
steps 2 and 3 as a pair, until the similarity detection step is no longer creating any new
connections.

We will present two different methods for implementing entity resolution in our use
case. The first method uses Jaccard similarity (detailed in Chapter 6) to count exact
matches of neighboring vertices and treating each neighbor with equal importance.
Merging will use a simple connected component algorithm. The second method is
more advanced, suggesting a way to handle both exact and approximate matches of
attribute values, and including weights to adjust the relative importance of relation‐
ships. Approximate matches are a good way to handle minor typos or the use of
abbreviated names.

Implementing Graph-Based Entity Resolution | 253

Method 1: Jaccard Similarity
For each of the three stages, well give a high-level explanation, directions for opera‐
tions to perform in TigerGraph’s GraphStudio, a description of what to expect as a
result, and a closer look at some of the GSQL code in the queries.

Initialization

Recall in our model that an Account is a digital identity and a User is a real per‐
son. The original database contains only Accounts. The initialization step creates
a unique temporary User linked to each Account. And for every edge that runs
from an Account to one of the attribute vertices (Email, Phone, etc.), we create a
corresponding edge from the User to the same set of attribute vertices. Figure 11-3
shows an example. The three vertices on the left and the two edges connecting them
are part of the original data. The initialization step creates the User vertex and the
three dotted-line edges. As a result, each User starts out with the same attribute
neighborhood as its Account.

Figure 11-3. User vertex and edges created in the initialization step

Do: Run the GSQL query initialize_users.

This query has no input parameters, so it will run immediately without any addi‐
tional steps from the user. The following block of code shows the first 20 lines of
initialize_users. The comment at the beginning lists the six types of attribute
vertices to be included:

254 | Chapter 11: Entity Resolution Revisited

CREATE QUERY initialize_users() FOR GRAPH Entity_Resolution SYNTAX v2 {
// Create a User vertex for each Account, plus edges to connect attributes
// (IP, Email, Device, Phone, Last_Name, Address) of the Account to the User

 // Initialize each account with a user
 Accounts = SELECT s FROM Account:s
 WHERE s.outdegree("Has_Account")==0
 ACCUM
 INSERT INTO User VALUES(s.id),
 INSERT INTO Has_Account VALUES(s.id, s);

 // Connect the User to all the attributes of their account
 IPs = SELECT attr FROM Accounts:s -(Has_IP:e)- IP:attr
 ACCUM
 INSERT INTO User_IP VALUES(s.id, attr);

 Emails = SELECT attr FROM Accounts:s -(Has_Email:e)- Email:attr
 ACCUM
 INSERT INTO User_Email VALUES(s.id, attr);

 // Remaining code omitted for brevity
}

In the first SELECT block, for each Account that doesn’t already have a neighboring
User, we use INSERT statements to create a User vertex and a Has_Account edge
connecting this User to the Account. The alias s refers to an Account; we give the new
User the same ID as that of its paired Account: s.id.

The next block takes care of IP attribute vertices: If there is a Has_IP edge from an
Account to an IP vertex, then insert an edge from the corresponding User vertex to
the same IP vertex. The final block in the section handles Email attribute vertices in
an analogous way. The code for the remaining four attribute types (Device, Phone,
Last_Name, and Address) has been omitted for brevity.

Similarity detection
Jaccard similarity counts how many attributes two entities have in common, divided
by the total number of attributes between them. Each comparison of attributes results
in a yes/no answer; a miss is as good as a mile. Figure 11-4 shows an example where
User A and User B each have three attributes; two of those match (Email 65 and
Device 87). Therefore, A and B have two attributes in common.

Implementing Graph-Based Entity Resolution | 255

Figure 11-4. Jaccard similarity example

They have a total of four distinct attributes (Email 65, Device 87, Phone 23, and
Phone 99); therefore, the Jaccard similarity is 2/4 = 0.5.

Do: Run the connect_jaccard_sim query with default parameter values.

This query computes this similarity score for each pair of vertices. If the score is at
or above the given threshold, it creates a Same_As edge to connect the two Users.
The default threshold is 0.5, but you can make it higher or lower. Jaccard scores
range from 0 to 1. Figure 11-5 shows the connections for User vertices 1, 2, 3, 4,
and 5, using Jaccard similarity and a threshold of 0.5. For these five vertices, we
find communities that range in size from one vertex alone (User 3) to three vertices
(Users 1 and 2).

256 | Chapter 11: Entity Resolution Revisited

Figure 11-5. Connections for User vertices 1, 2, 3, 4, and 5, using Jaccard similarity and
a threshold of 0.5 (see a larger version of this figure at https://oreil.ly/gpam1105)

How to Visualize User Communities
You can use the Explore Graph page in TigerGraph GraphStudio to create a display
like the one in Figure 11-5:

1. Click the “Select vertices” icon at the top of the left-side menu (step 1 in Fig‐1.
ure 11-6).

2. Choose the User vertex type. Enter the vertex ID 1 and click the Select icon. (step2.
2 in Figure 11-6). User 1 will appear in the display pane. Repeat for vertex IDs 2,
3, 4, and 5.

3. Shift-click the vertices so that all of them are selected (step 3, Figure 11-7).3.
4. Click the “Expand from vertices” icon, the next item in the left-side menu (step4.

4).
5. You are now presented with a checklist of all the edge types that you may wish5.

to traverse, followed by a checklist of all the target vertex types. We want to
include only the User and Account vertex types (step 5). This specifies a one-hop
exploration.

Implementing Graph-Based Entity Resolution | 257

https://oreil.ly/gpam1105

6. We need to explore multiple hops, including the full communities. We don’t6.
know the diameter of the communities, but let’s just guess that three hops is
enough. Click the “Add expansion step” button at the bottom (step 6). Another
set of checklists appear. Again, select only the User and Account vertex types.
This is the second hop. Repeat these steps to set your third hop.

7. Click the Expand button above the checklists (step 7).7.
8. To clean up the display, click the layout menu button in the lower right corner8.

once and choose Force.

Figure 11-6. Selecting vertices on the Explore Graph page

258 | Chapter 11: Entity Resolution Revisited

Figure 11-7. Expanding from vertices on the Explore Graph page

Implementing Graph-Based Entity Resolution | 259

We’ll go over a few parts of the GSQL code of connect_jaccard_sim to explain how
it works. In the following code snippet, we count the attributes in common between
every pair of Users, using a single SELECT statement. The statement uses pattern
matching to describe how two such Users would be connected, and then it uses an
accumulator to count the occurrences:

Others = SELECT B FROM
 Start:A -()- (IP|Email|Phone|Last_Name|Address|Device):n -()- User:B
 WHERE B != A
 ACCUM
 A.@intersection += (B -> 1), // tally each path A->B,
 @@path_count += 1; // count the total number of paths

GSQL’s FROM clause describes a left-to-right path moving from ver‐
tex to vertex via edges. Each sequence of vertices and edges that
fits the requirements forms one “row” in the temporary “table” of
results, which is passed on to the ACCUM and POST-ACCUM clauses for
further processing.

This FROM clause presents a two-hop graph path pattern to search for:

 FROM User:A -()- (IP|Email|Phone|Last_Name|Address|Device):n
 -()- User:B

The components of the clause are as follows:

• User:A means start from a User vertex, aliased to A.•
• -()- means pass through any edge type.•
• (IP|Email|Phone|Last_Name|Address|Device):n means arrive at one of these•

six vertex types, aliased to n.
• -()- means pass through another edge of any type.•
• User:B means arrive at a User vertex, aliased to B.•

WHERE B != A ensures that we skip the situation of a loop where A = B. The
next line announces the start of an ACCUM clause. Inside the ACCUM clause, the line
(A.@intersection += (B -> 1), // tally each path A->B) is a good example
of GSQL’s support for parallel processing and aggregation: for each path from A to B,
append a (key → value) record attached to A. The record is (B, +=1). That is, if this
is the first record associating B with A, then set the value to 1. For each additional
record where B is A’s target, then increment the value by 1. Hence, we’re counting
how many times there is a connection from A to B, via one of the six specified edge
types. This line ends with a comma, so the next line @@path_count += 1 is still part
of the ACCUM clause. For bookkeeping purposes, @@path_count counts how many of
these paths we find.

260 | Chapter 11: Entity Resolution Revisited

Let’s look at one more code block—the final computation of Jaccard similarity and
creation of connections between Users:

Result = SELECT A FROM User:A
 ACCUM FOREACH (B, overlap) IN A.@intersection DO
 FLOAT score = overlap*1.0/(@@deg.get(A) + @@deg.get(B) - overlap),
 IF score > threshold THEN
 INSERT INTO EDGE SameAs VALUES (A, B, score), // FOR Entity Res
 @@insert_count += 1,
 IF score != 1 THEN
 @@jaccard_heap += SimilarityTuple(A,B,score)
 END
 END
 END;

This SELECT block does the following:

1. For each User A, iterate over its set of records of similar Users B, along with B’s1.
number of common neighbors, aliased to overlap.

2. For each such pair (A, B), compute the Jaccard score, using overlap as well as the2.
number of qualified neighbors of A and B (@@deg.get(A) and @@deg.get(B)),
computed earlier.

3. If the score is greater than the threshold, insert a SameAs edge between A and B.3.
4. @@insert_count and @@jaccard_heap are for reporting statistics.4.

Merging
In our third and last stage, we merge the connected communities of User vertices that
we created in the previous step. For each community, we will select one vertex to be
the survivor or lead. The remaining members will be deleted; all of the edges from an
Account to a nonlead will be redirected to point to the lead User.

Do: Run the merge_connected_users query. The value of the threshold parameter
should always be the same as the value used for connect_jaccard_sim.

Look at the JSON output. Note whether it says converged = TRUE or FALSE. Fig‐
ure 11-8 displays the user communities for Accounts 1, 2, 3, 4, and 5. Each user
community has been reduced to a single User (real person). Each of those Users links
to one or more Accounts (digital identities). We’ve achieved our entity resolution.

Implementing Graph-Based Entity Resolution | 261

Figure 11-8. Entity resolution achieved, using Jaccard similarity (see a larger version of
this figure at https://oreil.ly/gpam1108)

The merge_connected_users algorithm has three stages:

1. In each component, select a lead User.1.
2. In each component, redirect the attribute connections from other Users to the2.

lead User.
3. Delete the Users that are not the lead User and all of the Same_As edges.3.

Let’s take a closer look at the GSQL code. For each group of similar Users connected
by Same_As edges, we will choose the one that happens to have the smallest ID
value as the lead User. We use a MinAccum called @min_user_id to compare vertices’
internal ID values. Whenever you input a new value to a MinAccum, it retains the
lesser of its current value and the new input value. We start by initialing every vertex’s
@min_user_id to itself:

Updated_users = SELECT s FROM Users:s
 POST-ACCUM s.@min_user_id = s;

Then, we iterate on the following process: for each pair of connected Users s → t
(FROM clause), vertex t updates @min_user_id to be the lesser of the two vertices’
internal IDs (ACCUM clause):

262 | Chapter 11: Entity Resolution Revisited

https://oreil.ly/gpam1108

WHILE (Updated_users.size() > 0) DO
 Updated_users = SELECT t
 FROM Updated_users:s -(SameAs:e)- User:t
 // Propagate the internal IDs from source to target vertex
 ACCUM t.@min_user_id += s.@min_user_id // t gets the lesser of t & s ids
 HAVING t.@min_user_id != t.@min_user_id' // tick' means accum's previous val
 ;
 iteration = iteration + 1;
END;

The HAVING clause is a filter to decide whether this particular t should be included
in the Updated_users output set. Note the tick mark (') at the end of the line;
this is a modifier for the accumulator t.@min_user_id. It means “the value of the
accumulator before the ACCUM clause was executed.” For looped procedures like this
WHILE loop, this syntax lets us compare the previous value to current values. If
t.@min_user_id’s value is the same as its previous value, then t is not included in
Updated_users. When no vertices have changed their @min_user_ids, we can exit the
WHILE loop.

It might seem that one pass through the three steps—initialize, connect similar
entities, and merge connected entities—should be enough. The merging, however,
can create a situation in which new similarities arise. Take a look at Figure 11-9,
which depicts the attribute connections of User 302 after Users 2 and 602 have been
merged into it. Accounts 2, 302, and 602 remain separate, so you can see how each of
them contributed some attributes. Because User 302 has more attributes than before,
it is now possible that it is more similar than before to some other (possibly newly
merged) User. Therefore, we should run another round of similarity connection and
merge. Repeat these steps until no new similarities arise.

Implementing Graph-Based Entity Resolution | 263

Figure 11-9. User with more attributes after entity resolution (see a larger version of this
figure at https://oreil.ly/gpam1109)

As a reminder, here is the sequence of queries for simple entity resolution using
Jaccard similarity:

1. Run initialize_users.1.
2. Run connect_jaccard_sim.2.
3. Run merge_connected_users.3.
4. Repeat steps 2 and 3 until the output of merge_connected_users says converged4.

= TRUE.

Reset
After you’ve finished, or at any time, you might want to restore the database to its
original state. You need to do this if you want to run the entity resolution process
from the start again. The query util_delete_users will delete all User vertices and

264 | Chapter 11: Entity Resolution Revisited

https://oreil.ly/gpam1109

all edges connecting to them. Note that you need to change the input parameter
are_you_sure from FALSE to TRUE. This manual effort is put in as a safety precaution.

Deleting bulk vertices (util_delete_users) or creating bulk verti‐
ces (initialize_users) can take several seconds to take effect,
even after a query says it is finished. Go to the Load Data page to
check the live statistics for User vertices and User-related edges to
see if the creation or deletion has finished.

Method 2: Scoring Exact and Approximate Matches
The previous section demonstrated a nice and easy graph-based entity resolution
technique, but it is too basic for real-world use. It relies on exact matching of
attribute values, whereas we need to allow for almost the same values, which arise
from unintentional and intentional spelling variations. We also would like to make
some attributes more important than others. For example, if you happen to have
date-of-birth information, you might be strict about this attribute matching exactly.
While persons can move and have multiple phone numbers and email addresses,
they can have only one birth date. In this section, we will introduce weights to adjust
the relative importance of different attributes. We will also provide a technique for
approximate matches of string values.

If you already used your starter kit to run Method 1, be sure to
reset it. (See “Reset” on page 264 at the end of Method 1.)

Initialization

We are still using the same graph model with User vertices representing real persons
and Account vertices representing digital accounts. So we are still using the initial
ize_users query to set up an initial set of User vertices.

We are adding the query util_set_weights as another initialization step. This query
accepts weights for each of the six attributes (IP, Email, Phone, Address, Last_Name,
and Device) and stores them. If this were a relational database, we would store those
weights in a table. Since this is a graph, we are going to store them in a vertex. We
need only one vertex, because one vertex can have multiple attributes. However, we
are going to be even fancier. We are going to use a map type attribute, which will have
six key → value entries. This allows us to use the map like a lookup table: tell me the
name of the key (attribute name), and I’ll tell you the value (weight).

If we had some ground truth training data (e.g., knowing which accounts truly belong
to the same user), we could use machine learning to learn what attribute weight

Implementing Graph-Based Entity Resolution | 265

values are good at predicting whether two accounts belong to the same real person.
Since we do not have any training data, the job of setting the best weights is left to the
experience and judgment of the user.

Do: Run initialize_users. Check the graph statistics on the Load Data page to
make sure that all 901 User vertices and related edges have been created. Run
util_set_weights. The weights for the six attributes are input parameters for this
query. Default weights are included, but you may change them if you wish. If you
want to see the results, run util_print_vertices.

Scoring weighted exact matches
We are going to do our similarity comparison and linking in two phases. In phase
one, we are still checking for exact matches because exact matches are more valuable
than approximate matches; however, those connections will be weighted. In phase
two, we will then check for approximate matches for our two attributes that have
alphabetic values: Last_Name and Address.

In weighted exact matching, we create weighted connections between Users, where
higher weights indicate stronger similarity. The net weight of a connection is the sum
of the contributions from each attribute that is shared by the two Users. Figure 11-10
illustrates the weighted match computation. Earlier, during the initialization phase,
you established weights for each of the attributes of interest. In the figure, we use the
names wt_email and wt_phone for the weights associated with matching Email and
Phone attributes, respectively.

Figure 11-10. Two-phase calculation of weighted matches

266 | Chapter 11: Entity Resolution Revisited

The weighted match computation has two steps. In step 1, we look for connections
from Users to Attributes and record a weight on each attribute for a connection
to each User. Both User A and User B connect to Email 65, so Email 65 records
A:wt_email and B:wt_email. Each User’s weight needs to be recorded separately.
Phone 99 also connects to Users A and B so it records analogous information.

In step 2, we look for the same connections but in the other direction, with Users
as the destinations. Both Email 65 and Phone 99 have connections to User A. User
A aggregates their records from step 1. Note that some of those records refer to
User A. User A ignores those, because it is not interested in connections to itself! In
this example, it ends up recording B:(wt_email + wt_phone). We use this value to
create a weighted Same_As edge between Users A and B. You can see that User B has
equivalent information about User A.

Do: run the connect_weighted_match query.

Figure 11-11 shows one of the communities generated by connect_weighted_match.
This particular community is the one containing User/Account 5. The figure also
shows connections to two attributes, Address and Last_Name. The other attributes
such as Email were used in the scoring but are not shown, to avoid clutter.

Implementing Graph-Based Entity Resolution | 267

Figure 11-11. User community including Account 5 after exact weighted matching (see a
larger version of this figure at https://oreil.ly/gpam1111)

The thickness of the Same_As edges indicates the strength of the connection. The
strongest connection is between Users 505 and 805 at the bottom of the screen. In
fact, we can see three subcommunities of Users among the largest community of
seven members:

• Users 5, 105, and 205 at the top. The bond between Users 5 and 105 is a little•
stronger, for reasons not shown. All three share the same last name. They have
similar addresses.

• Users 305 and 405 in the middle. Their last names and addresses are different, so•
some of the attributes not shown must be the cause of their similarity.

268 | Chapter 11: Entity Resolution Revisited

https://oreil.ly/gpam1111

4 Even more advanced similarity algorithms exist that are able to incorporate the semantic similarity between
strings as well as the edit distance. For this example, we use a relatively simple algorithm for the sake of speed
and easy illustration.

• Users 505 and 805 at the bottom. They share the same last name and address, as•
well as other attributes.

Scoring approximate matches

We can see in Figure 11-11 that some Users have similar names (Ellsworth versus
Ellesworth) and similar addresses (Eagle Creek Center versus Eagle Crest Ctr). A scor‐
ing system that looks only for exact matchings gives us no credit for these near misses.
An entity resolution system is ideally able to assess the similarity of two text strings and
to assign a score to the situation. Do they differ by a single letter, like Ellesworth and
Ellsworth? Are letters transposed, like Center and Cneter? Computer scientists like to
think of the edit distance between two text strings: how many single-letter changes of
value or position are needed to transform string X into string Y?

We are going to use Jaro-Winkler (JW) similarity4 to measure the similarity between
two strings, an enhancement of Jaro similarity. Given two strings, s1 and s2, that have
m matching characters and t transformation steps between them, their Jaro similarity
is defined as:

Jaro s1, s2 = 1
3
m
s1 + m

s2 + m − t
m

.

If the strings are identical, then m = |s1| = |s2|, and t = 0, so the equation simplifies to
(1 + 1 + 1)/3 = 1. On the other hand, if there are no letters in common, then the score
is 0. JW similarity takes Jaro as a starting point and adds an additional reward if the
beginnings of each string—reading from the left end—match exactly.

The net similarity score for two attribute values is their JW similarity multiplied by
the weight for the attribute type. For example, if the attribute’s weight is 0.5, and if the
JW similarity score is 0.9, then the net score is 0.5 × 0.9 = 0.45.

Do: Run the score_similar_attributes query.

The score_similar_attributes query considers the User pairs that already are
linked by a Same_As edge. It computes the weighted JW similarity for the Last_Name
and the Address attributes, and adds those scores to the existing similarity score. We
chose Last_Name and Address because they are alphabetic instead of numeric. This
is an application decision rather than a technical one. Figure 11-12 shows the results
after adding in the scores for the approximate matches.

Implementing Graph-Based Entity Resolution | 269

Figure 11-12. User community including Account 5 after exact and approximate weigh‐
ted matching (see a larger version of this figure at https://oreil.ly/gpam1112)

Comparing Figure 11-11 and Figure 11-12, we notice the following changes:

• The connections among Users 1, 105, and 205 have strengthened due to their•
having similar addresses.

• User 305 is more strongly connected to the trio above due to a similar last name.•
• The connection between 305 and 405 has strengthened due to their having•

similar addresses.
• User 405 is more strongly connected to Users 505 and 805 due to the name•

Hunter having some letters in common with Brunke. This last effect might be
considered an unintended consequence of the JW similarity measure not being
as judicious as a human evaluator would be.

270 | Chapter 11: Entity Resolution Revisited

https://oreil.ly/gpam1112

Comparing two strings is a general-purpose function that does not require graph
traversal, so we have implemented it as a simple string function in GSQL. Because it
is not yet a built-in feature of the GSQL language, we took advantage of GSQL’s ability
to accept a user-supplied C++ function as a user-defined function (UDF). The UDFs
for jaroDistance(s1, s2) and jaroWinklerDistance(s1, s2) are included in this
starter kit. You can invoke them from within a GSQL query anywhere that you would
be able to call a built-in string function. Of course, any other string comparison
function could be implemented here in place of JW.

The following code snippet shows how we performed the approximate matching and
scoring for the Address feature:

connected_users = SELECT A
 // Find all linked users, plus each user's address
 FROM Connected_users:A -(SameAs:e)- User:B,
 User:A -()- Address:A_addr,
 User:B -()- Address:B_addr
 WHERE A.id < B.id // filter so we don't count both (A,B) & (B,A)
 ACCUM @@addr_match += 1,
 // If addresses aren't identical compute JaroWinkler * weight
 IF do_address AND A_addr.val != B_addr.val THEN
 FLOAT sim = jaroWinklerDistance(A_addr.id,B_addr.id) * addr_wt,
 @@sim_score += (A -> (B -> sim)),
 @@string_pairs += String_pair(A_addr.id, B_addr.id),
 IF sim != 0 THEN @@addr_update += 1 END
 END

The lines in the first FROM clause are an example of a conjunctive path pattern, that is,
a compound pattern composed of several individual patterns, separated by commas.
The commas act like Boolean AND. This conjunctive pattern means “find a User
A linked to a User B, and find the Address connected to A, and find the Address
connected to B.” The following WHERE clause filters out the case where A = B and
prevents a pair (A, B) from being processed twice.

The IF statement filters out the case where A and B are different but have identical
addresses. If their addresses are the same, then we already gave them full credit when
we ran connect_weighted_match. We then compute the weighted scoring, using the
jaroWinklerDistance function and the weight for Address, storing the score in a
FLOAT variable sim, which gets temporarily stored in a lookup table. The last two lines
in the IF statement are just to record our activity, for informative output at the end.

Merging similar entities
In Method 1, we had a simple scheme for deciding whether to merge two entities:
if their Jaccard score was greater than some threshold, then we created a Same_As
edge. The decision was made to merge everything that has a Same_As edge. We want
a more nuanced approach now. Our scoring has adjustable weights, and the Same_As

Implementing Graph-Based Entity Resolution | 271

edges record our scores. We can use another threshold score to decide which Users to
merge.

We only need to make two small changes to merge_connected_users to let the user
set a threshold:

1. Save a copy of merge_connected_users as a new query called merge_simi1.
lar_users.

2. Add a threshold parameter to the query header:2.
CREATE QUERY merge_similar_users(FLOAT threshold=1.0, BOOL verbose=FALSE)

3. In the SELECT block that finds connected Users, add a WHERE clause to check the3.
Same_As edge’s similarity value:

WHILE (Updated_users.size() > 0) DO
 IF verbose THEN PRINT iteration, Updated_users.size(); END;
 Updated_users = SELECT t
 FROM Updated_users:s -(SameAs:e)- User:t
 WHERE e.similarity > threshold
 // Propagate the internal IDs from source to target vertex
 ACCUM t.@min_user_id += s.@min_user_id // t gets the lesser of t & s ids
 HAVING t.@min_user_id != t.@min_user_id' // accum' is accum's previous val
 ;
 iteration = iteration + 1;
END;

Run merge_similar_users. Pick a threshold value and see if you get the result that
you expect.

For the community shown in Figure 11-12, Figure 11-13 shows the three different
merging results for threshold values of 1.0, 2.5, and 3.0.

272 | Chapter 11: Entity Resolution Revisited

Figure 11-13. Entity resolution with different threshold levels (see a larger version of this
figure at https://oreil.ly/gpam1113)

That concludes our second and more nuanced method of entity resolution.

To review, here is the sequence of queries we ran for entity resolution using weighted
exact and approximate matching:

1. Run initialize_users.1.
2. Run util_set_weights.2.
3. Run connect_weighed_match.3.
4. Run score_similar_attributes.4.
5. Run merge_similar_users.5.
6. Repeat steps 3, 4 and 5 until the output of merge_similar_users says converged6.

= TRUE.

Chapter Summary
In this chapter, we saw how graph algorithms and other graph techniques can be
used for sophisticated entity resolution. Similarity algorithms and the connected
component algorithm play key roles. We considered several schemes for assessing the

Chapter Summary | 273

https://oreil.ly/gpam1113

similarity of two entities: Jaccard similarity, the weighted sum of exact matches, and
Jaro-Winkler similarity for comparing text strings.

These approaches can readily be extended to supervised learning if training data
becomes available. There are a number of model parameters that can be learned to
improve the accuracy of the entity resolution: the scoring weights of each attribute
for exact matching, tuning the scoring of approximate matches, and thresholds for
merging similar Users.

We saw how the FROM clause in GSQL queries selects data in a graph by expressing
a path or pattern. We also saw examples of the ACCUM clause and accumulators being
used to compute and store information such as the common neighbors between
vertices, a tally, an accumulating score, or even an evolving ID value, marking a
vertex as a member of a particular community.

This chapter showed us how graph-based machine learning can improve the ability
of enterprises to see the truth behind the data. In the next chapter, we’ll apply
graph machine learning to one of the most popular and important use cases: fraud
detection.

274 | Chapter 11: Entity Resolution Revisited

CHAPTER 12

Improving Fraud Detection

In an earlier chapter, we took on the problem of fraud detection by designing graph
queries that looked for certain patterns of behavior that could be suspicious. This
chapter will apply machine learning methods to improve fraud detection. Machine
learning can help us via anomaly detection or by training the software to recognize
fraud based on examples of known fraud cases. In both cases, graph-structured data
is a valuable asset for sensing the unusual (anomalies) or for supplying data features
(to build predictive models). No method is perfect, but machine learning can often
detect patterns and anomalies that humans would miss. Conventional approaches
only follow the rules that experts dictate. Using machine learning on graphs, we can
detect patterns within the data that were not explicitly flagged as fraud cases, which
makes it more adaptive to changing fraud tactics.

After completing this chapter, you should be able to:

• Deploy and use the TigerGraph Machine Learning Workbench•
• Use graph-based features to enrich the feature vector of a dataset and then•

compare the model accuracies with and without the graph features
• Prepare data for and train a graph neural network for node prediction—in this•

case, fraud prediction

Goal: Improve Fraud Detection
Fraud is the use of deception for personal enrichment. Fraudsters might sabotage a
system and its users, but in the end it is for personal gain. Examples of fraudulent
activities are identity theft, false or exaggerated insurance claims, and money launder‐
ing. Fraud detection is a set of activities to prevent fraudsters from carrying out such
activities successfully. In many cases, fraudsters want to gain money from their effort.

275

1 “Discover the True Cost of Fraud,” LexisNexis, accessed May 29, 2023, https://risk.lexisnexis.com/insights-
resources/research/us-ca-true-cost-of-fraud-study.

2 MacKenzie Sigalos, “Crypto Scammers Took a Record $14 Billion in 2021,” CNBC, January 6, 2022, https://
www.cnbc.com/2022/01/06/crypto-scammers-took-a-record-14-billion-in-2021-chainalysis.html.

Therefore fraud detection is a common practice among financial institutions, but it
is also prevalent across organizations that hold valuable assets and properties, such as
insurance, medical, governmental, and major retail organizations.

Fraud is a major business risk and is increasingly difficult to combat. According to
a study from LexisNexis, every $1 of fraud costs $3.75 for companies within the
ecommerce and retail sectors in the US, which is an increase of 19.8% since 2019.1

These fraud costs come from fraudulent transactions due to identity fraud, which
includes misuse of stolen identity or personal information. Fraud detection is becom‐
ing more challenging because of the growing channels through which fraudsters can
operate. For example, an alarming trend is that fraud costs are surging via mobile
smartphones. During the COVID-19 pandemic, consumers were pushed to do more
digital transactions. Many of those transactions rely on smartphones, which have
opened up new ways for fraudsters to mislead people.

Cryptocurrency is a popular medium of exchange for fraudsters. Instead of being
issued and regulated by governments or central banks, cryptocurrencies are digital
assets that are transferred between account holders, typically using an open and
distributed ledger. This technology allows everyone to participate in the exchange
without identification through a central authority, making money laundering, scams,
and theft more appealing. In 2021, criminals stole $14 billion in cryptocurrency, and
crypto-related crime rose to 79% from 2020.2

Solution: Use Relationships to Make a Smarter Model
Fraud can be detected if more facts about the parties and activities involved can
be gathered and connected to see how they fit together. For example, suppose we
find unusual transaction behavior, such as moving a high volume of money between
accounts in a short period of time. Statistically, a certain percentage of such behavior
is due to fraud. However, if those accounts have a connection to entities that central
authorities have sanctioned, then the possibility of a fraud case becomes greater. In
other words, when using transactional data in isolation, we can see a limited aspect of
the case, but when we connect that data to another dataset that identifies sanctioned
entities, we can take into account the path length between a party and a sanctioned
entity. Using those relationships between different datasets is greater than the sum of
its parts.

A graph is an excellent way to discover these relationships and patterns. In an earlier
chapter, we saw how to use GSQL queries to detect particular patterns of interest.

276 | Chapter 12: Improving Fraud Detection

https://risk.lexisnexis.com/insights-resources/research/us-ca-true-cost-of-fraud-study
https://risk.lexisnexis.com/insights-resources/research/us-ca-true-cost-of-fraud-study
https://www.cnbc.com/2022/01/06/crypto-scammers-took-a-record-14-billion-in-2021-chainalysis.html
https://www.cnbc.com/2022/01/06/crypto-scammers-took-a-record-14-billion-in-2021-chainalysis.html

However, relying on the investigators to know the patterns in advance is limiting.
A more powerful approach is to use machine learning to determine which patterns
indicate fraud.

Most machine learning methods analyze vectors or matrices. Each vector is a list
of numerical characteristics or features of one type of entity, such as a person. The
machine learning method looks for patterns among those features. The data scientist
provides the system with a representative sample of actual fraudulent (and nonfrau‐
dulent) cases for the machine learning system to analyze. The machine learning
system’s job is to extract a model that says, “When you have these feature values, you
are likely to have fraud.”

This approach has been a powerful tool in fighting fraud, but it is not perfect. One
limitation is that a model is only as good as the training data provided. If our feature
vectors are only describing direct characteristics of entities, then we are missing out
on the deeper graph-oriented relationships that could be valuable. By combining
the deeper insight that is available with graph analytics, we can enrich the input or
training data, thereby producing more accurate machine learning models.

In the following hands-on example, we will use the TigerGraph Machine Learning
Workbench to help us extract graph features automatically to enrich training data as
well as to run a graph neural network (GNN).

Using the TigerGraph Machine Learning Workbench
For this hands-on exercise, which is focused on machine learning, we will be using
the TigerGraph Machine Learning Workbench, or ML Workbench for short. Based
on the open source JupyterLab IDE for Python-oriented data scientists, and including
TigerGraph’s Python library pyTigerGraph, the ML Workbench makes it simple to
develop a machine learning pipeline that includes graph data.

Setting Up the ML Workbench
We will first obtain an instance of the ML Workbench on the TigerGraph Cloud
service and then connect it to a database instance.

Create a TigerGraph Cloud ML Bundle
The easiest way to set up the ML Workbench is to deploy a TigerGraph Cloud ML
Bundle, which adds the ML Workbench as one of the tools available to use with a
TigerGraph Cloud database instance:

1. There is a small charge for using the ML Bundle, so you will need to set up1.
payment information on your account.

Using the TigerGraph Machine Learning Workbench | 277

2. From the Clusters screen of your TigerGraph Cloud account, click on the Create2.
Cluster button.

3. At the top of the Create Cluster page, select the ML Bundle option on the right.3.
4. Select an instance size. The smallest one available is fine for this exercise.4.
5. We will be using a dataset and queries that are built into the ML Workbench, so it5.

doesn’t matter what use case you select here. Finish setting any other options that
you wish, then click Create Cluster at the bottom of the page.

The cluster takes a few minutes to provision.

Create and copy database credentials
The ML Workbench includes a robust series of example Jupyter notebooks that use
pyTigerGraph to download datasets and create graphs in your cluster. Before it can
do this, it must first gain access to the TigerGraph database using credentials that you
provide:

1. You should still be on the Clusters page of TigerGraph Cloud. For the cluster you1.
just created, click Access Management.

2. Click the Database Access tab and then Add Database Users.2.
3. Enter a username and password. Be sure to remember both of these, since you3.

will use them later in the ML Workbench.
4. Go to the Role Management tab next to Database Access.4.
5. Select the checkbox next to your new user, set the role to globaldesigner, then5.

click Save.
6. Go to the Details tab. Copy the Domain, which ends in i.tgcloud.io.6.

Connect the ML Workbench to your graph database

1. Go to GraphStudio for this database instance.1.
2. In the upper right corner, click on the Tools menu icon (an icon of a 3 × 3 grid),2.

and then select ML Workbench.
3. After the workbench opens, find config.json in the left-side panel and double-3.

click to edit it.
4. Replace the URL value of host with the domain value that you copied. The4.

resulting value should still start with https:// and end with i.tgcloud.io.
5. Change the username and password values to the username and password of the5.

new user you created.

278 | Chapter 12: Improving Fraud Detection

Although this process involves several steps, once you get used to the TigerGraph
Cloud and ML Workbench interfaces, it will become second nature to grant ML
Workbench access to your cluster through a new database user.

Working with ML Workbench and Jupyter Notes
Double-click README.md in the file browser’s left panel in the ML Workbench, as
shown in Figure 12-1, to get an overview of the general structure and capabilities of
pyTigerGraph and the ML Workbench component.

Figure 12-1. ML Workbench and the README file

You just completed the Set Up section. Scroll down to the Learn section. Here you’ll
see lists of tutorial and example notebooks for getting started, graph algorithms,
GNNs, and end-to-end applications.

The remainder of this section walks through the Datasets.ipynb notebook, for users
not familiar with Jupyter. If you are familiar with Jupyter, you should still go through
this quickly to verify that your database connection is working.

Open the Datasets.ipynb notebook in the Basics folder. This file is a Jupyter notebook,
which combines Python code snippets with explanatory comments. Python blocks
are enumerated [1], [2], and so on. A thick blue bar at the left highlights the next
section to be executed. Clicking the right-facing arrow at the command menu at the
top will execute the next code block:

1. Click the arrow until block [1] Download dataset starts to run.1.
While it is running, the number in the brackets will change to an asterisk (*).
When it completes, the asterisk will change back to the number. Pay attention to
any output for information or error messages.

Using the TigerGraph Machine Learning Workbench | 279

3 Liang Chen et al., “Phishing Scams Detection in Ethereum Transaction Network,” ACM Transactions on
Internet Technology 21, no. 1 (February 2021): 1–16, doi: 10.1145/3398071.

4 Liang Chen et al., “Ethereum Phishing Transaction Network,” XBlock, accessed May 29, 2023, https://
xblock.pro/#/dataset/13.

When running an ML Workbench notebook, be sure your
database is active (not paused). If it is paused, then when you
try to run a block, the square brackets will contain an empty
space [] instead of an asterisk [*].

2. Run the next three Python blocks: Create connection, Ingest data, and Visualize2.
schema.

If you have a problem with Create connection, then you probably did not set up
the config.json file correctly. The Ingest data step will take several seconds. The last
step should conclude by showing you an image of a simple schema with Paper
vertices and Cite edges. Looking back at the code blocks, we see that we made use
of two pyTigerGraph libraries (datasets and visualization) and a few classes and
methods: TigerGraphConnection.ingestDataset and visualization.drawSchema.

The rest of the notebook ingests another dataset, IMDB. These two datasets are used
by some of the other notebooks.

Graph Schema and Dataset
For our graph machine learning example, we will now turn to the fraud_detection
notebook inside the applications folder. The data used here are transactions on
the Ethereum platform; Ether is the second-largest cryptocurrency in terms of mar‐
ket capitalization. The transactions form a graph, where vertices are wallets (i.e.,
accounts) on the platform, and edges are transactions between the accounts. There
are 32,168 vertices and 84,088 directed edges pointing from the sending account to
the receiving account. The dataset is derived from research by Liang Chen et al.
in “Phishing Scams Detection in Ethereum Transaction Network,”3 available from
XBlock.4 Having directed edges tells us how the money is moving, which is important
for any financial analysis, including fraud detection.

Each account vertex has an is_fraud parameter. The dataset has 1,165 accounts
that are labeled as fraudulent. These were reported to be accounts belonging to
phishing scammers, one of the most common forms of fraud in the cryptocurrency
community.

A typical phishing scam in the crypto economy occurs when the attacker sets up a site
that promises to return a big reward with a small investment, usually promising that

280 | Chapter 12: Improving Fraud Detection

https://xblock.pro/#/dataset/13
https://xblock.pro/#/dataset/13

the victim is getting in early on a scheme that will see huge gains. The gains never
come, and the initial investment is lost forever.

Because these scammers accept many small transactions in a short amount of time
and then move the money in larger chunks to other accounts, their transaction activ‐
ity usually doesn’t match the profile of the typical legitimate cryptocurrency user. The
vertices in the dataset have seven parameters—detailed in Table 12-1—corresponding
to the features described in Chen et al.

Importantly, none of these graph features are actually represented in the dataset
upon loading. The dataset only contains the ID and is_fraud flag on the vertices
(accounts) and the amount and timestamp on the edges (transactions). We use the
given information to generate the graph features during the tutorial walkthrough.

Table 12-1. Graph-based features for the Ethereum transaction dataset

Feature Description
FT1 Indegree, or the number of incoming transactions for an account vertex
FT2 Outdegree, or the number of outgoing transactions for an account vertex
FT3 Degree, or the total number of transactions involving an account
FT4 In-strength, or the total monetary amount of all incoming transactions
FT5 Out-strength, or the total monetary amount of all outgoing transactions
FT6 Strength, or the total monetary amount of all transactions involving an account
FT7 Number of neighbors
FT8 Inverse transaction frequency: this is the time interval between the account’s first and last transaction divided by

FT3

Fraudulent accounts tend to have higher values for features 4, 5, and 6 and smaller
values for feature 8. Phishing attackers steal a great deal of money overall through
many smaller transactions.

FT7 (number of neighbors) differs from FT3 (number of transactions) because one
neighbor could be responsible for multiple transactions. When we load the data into
TigerGraph, we merge all the transactions between a pair of accounts into a single
edge, so we do not use FT7. Despite this simplification, we still achieve good results,
as will soon be demonstrated. Additional features in a similar dataset may very well
improve performance even further. While the exact graph features that a bank uses
for fraud detection are both data dependent and trade secrets, it is generally believed
that centrality algorithms like PageRank and community detection algorithms like
Louvain have often been helpful.

Although these metrics provide a quick intuitive look at the behavior of phishing
attacks, both a traditional machine learning approach and a GNN are able to figure
out a more precise relationship among all of the features in order to discriminate

Using the TigerGraph Machine Learning Workbench | 281

between accounts used for phishing and accounts used legitimately. In this chapter,
we’ll compare the approaches and outcomes for both methods.

Check that the first code block in the fraud_detection notebook has the same
connection and credentials information that you set up in config.json before. Run
the Database Preparation steps of the fraud_detection notebook to create the graph
schema and load the data.

Graph Feature Engineering
You should now be at the section entitled Graph Feature Engineering. As the note‐
book says, we use a pyTigerGraph featurizer object to generate features: two fea‐
tures from built-in algorithms (PageRank and betweenness centrality), and two from
GSQL queries of our own. The Featurizer provides a high-level simplified process
for generating and storing graph-based features. Algorithms in the GDS Library are
automatically available to the Texturizer; users only need to specify some parameters.

We call our object f. Run code block 4 to create it:

[4] : f = conn.gds.featurizer()

In the PageRank section, we use the tg_pagerank algorithm included in the pre-
installed Featurizer algorithm set. PageRank measures the influence of vertices in a
graph. If a vertex is pointed to by many other vertices that themselves are pointed
to by many vertices, it receives a high PageRank score. Each algorithm uses a set
of input parameters. You can check the documentation for the TigerGraph GDS
Library to see what the parameters are for a particular algorithm. In the PageRank
code block, we specify a Python dictionary of parameters and their values to pass
to PageRank. Since this graph schema is so simple, the choice of vertex and edge
type is made for us. We store the ranking value in each vertex under the attribute
pagerank, then return the top five vertices with the highest values. There is a similar
code block to generate betweenness centrality as a vertex feature. Betweenness is a
slow algorithm; be patient.

Next we calculate features for the transactions based on their degree (FT3 in the
feature chart) and their amount (FT6, also known as strength). These use custom
queries that can be found in the GraphML/applications/fraud_detection/gsql folder of
the notebook. Run code blocks under Degree Features and Amount Features. Each
one takes about 10 to 20 seconds.

Look at the queries to check your understanding of GSQL. The amounts query sets
four vertex attributes for each vertex in the graph: the minimum received, the total
amount received, the minimum sent, and the total amount sent. The degrees query
is even simpler, just checking the number of transactions received (the indegree) and
the number sent to other vertices (the outdegree).

282 | Chapter 12: Improving Fraud Detection

https://oreil.ly/2TAhH
https://oreil.ly/2TAhH

5 As graph machine learning is a rapidly developing field, the algorithms in the notebook might be updated by
the time you obtain it.

Now that we have a set of graph-related features on each vertex, including the
ground truth of whether or not they are fraudulent accounts, we can use traditional
supervised machine learning methods to try to predict fraud.

Run the next code block for FastRP5 Embeddings. FastRP is a vertex embedding
algorithm based on the principle of random projection (RP) to perform dimension‐
ality reduction. FastRP is also part of the TigerGraph built-in algorithm library.
For relatively small datasets like this one, it provides very good performance with
reasonable resource cost.

Run the Check Labels block to check the number of fraud and normal accounts in the
dataset. You should get the following statistics about the labeled accounts:

Fraud accounts: 1165 (3.62%%)
Normal accounts: 31003 (96.38%%)

In the Train/Test Split code blocks, we split the vertices using the vertexSplitter
function into 80% training data and 20% validation data. The vertexSplitter func‐
tion as included in the notebook assigns two Boolean features, is_training and
is_validation, to each vertex, then randomly assigns each one true or false values
to create the 80-20 split.

Next, we create two Vertex Loaders, which load all vertices of the graph onto the
machine learning server in batches. We pass a list of attributes to include; all of these
we recently created in the last few steps, except for the is_fraud label. We display the
first five vertices in each set to make sure they were loaded in correctly.

Training Traditional Models with Graph Features
Now we are ready to train our fraud detection model. We will use XGBoost, a popular
classification algorithm for tabular data. We import the XGBClassifier class from the
xgboost library and create a classifier instance called tree_model, as shown in the
Create xgboost model code block.

Next we train XGBoost models using three different sets of features so we can
compare their results. For each case, we create a list consisting of the selected graph
features, except for is_fraud. Then we use tree_model.fit() to say, “Using the
features of our training data, try to predict the attribute is_fraud.” After training
each model, another code block evaluates each model using the Accuracy, BinaryPre
cision, and BinaryRecall modules from the metrics library in pyTigerGraph.

Using the TigerGraph Machine Learning Workbench | 283

https://oreil.ly/PgE0O

Run the first case, which uses only nongraph features. Your model should achieve
approximately 75% accuracy, 12% precision, and 100% recall. Remember that about
3.6% of the transactions are fraudulent. A 100% recall means our model will catch all
the real cases of fraud. Since the overall accuracy is 75%, this means that the model is
incorrectly classifying about 25% of the normal accounts as fraudsters.

Run the next case, which now includes PageRank and betweenness centrality. You
should see that accuracy and precision go up by a few percentage points, while recall
drops to about 98%. Finally, run the third case, which adds the FastRP embedding
to the feature set. You should see a significant increase in accuracy and precision.
Figure 12-2 compares the prediction performance of the three cases.

Figure 12-2. Prediction performance with and without graph features and graph embed‐
ding (see a larger version of this figure at https://oreil.ly/gpam1202)

284 | Chapter 12: Improving Fraud Detection

https://oreil.ly/gpam1202

Run the next cell under the Explain Model section to create a chart like Figure 12-3,
showing the feature importance for Case 2, including the graph algorithms but
not the graph embedding in our training. Note that pagerank is the second most
important feature for predicting fraud, close behind the send_amount.

Figure 12-3. Importance of features for XGBoost model with graph algorithms (see a
larger version of this figure at https://oreil.ly/gpam1203)

Next, run the subsequent cell under Explain Model to see the feature importance with
the embeddings. Here, all the dimensions of the embeddings are summed into one
feature importance score. Figure 12-4 shows that the embedding heavily contributes
to the model’s performance.

Using the TigerGraph Machine Learning Workbench | 285

https://oreil.ly/gpam1203

Figure 12-4. Importance of features for XGBoost model with FastRP embeddings (see a
larger version of this figure at https://oreil.ly/gpam1204)

Using a Graph Neural Network
In the next section, we set up a graph neural network to try to predict fraud accounts
even more accurately.

In the first block of the GNN section, we set some hyperparameters. We’ve already
selected good hyperparameter values that produce a highly accurate result. However,
fine-tuning hyperparameters is one of the arts of machine learning, so after you finish
this section, come back to this stage and experiment with tweaking these values.

Just like in the last section, we set up two loaders to get the data into two big chunks:
training and validation. These, however, use the neighborLoader method instead
of vertexLoader. In a GNN, every vertex is influenced by its neighboring vertices.
Therefore, when we load data, we load not just individual vertices but neighborhoods
centered around each vertex. As you can see, the syntax for these loaders is roughly
equivalent to the loaders in the xgboost section, though these loaders also incorporate
some of the hyperparameters.

Now that our data is all set up, we can create and train the GNN. This notebook
uses the pyTorch Geometric GDS library, which offers several GNN models. The
ML Workbench is flexible enough to use any of these; it also supposes DGL and
TensorFlow graph machine learning libraries. Some of the more common models are
built into pyTigerGraph, for even easier use.

286 | Chapter 12: Improving Fraud Detection

https://oreil.ly/gpam1204

We will use a graph attention network (GAT in the pyTorch Geometric library),
which combines the fine-grained modeling of attention models with graph neighbor
convolution. We run the network for 10 epochs.

This takes slightly longer than the nongraph XGBoost model. This is partially because
of the complexity of the neural network compared to the decision tree model. In
the free cloud instance tier, this takes about five seconds per epoch. Enterprise-level
datasets normally run on much more capable hardware, taking advantage of GPUs to
speed up the process significantly more than is possible using a CPU.

The extra wait paid off, though. When the last epoch finishes, look at the returned
values: we achieved greater than 90% accuracy!

Run the next several cells to get a visual look at the training over time. In the Explain
Model section, we randomly select a fraudulent vertex to see what its network looks
like. Since we don’t have a perfectly accurate model, this cell may sometimes show
vertices with few or no connections. However, if you run the cell more times, you’ll
probably see vertex neighborhoods closer to the one shown in Figure 12-5.

Figure 12-5. Visual explanation of prediction for vertex 311 (see a larger version of this
figure at https://oreil.ly/gpam1205)

In this case, the vertex receives a high number of transactions from other vertices
and then makes large transactions out to a few more. If this really is a scammer, they
could be receiving many payments and then shifting their money to another set of
accounts that they also have access to.

Using the TigerGraph Machine Learning Workbench | 287

https://oreil.ly/gpam1205

Running the last code blocks, we get another chart for importance of features,
like Figure 12-6. We see that the important features in our more accurate GNN
model tend to be different from the features that were identified as important in the
XGBoost model. Here, PageRank is not as important for detecting fraud as amount
received, amount sent, and number of incoming transactions. Remember, however,
that the neighborhood convolution of the GNN model is already taking into account
the effect of relationships, so graph features like PageRank might be redundant.

Figure 12-6. Importance of features for GNN model predicting fraud for vertex 311 (see
a larger version of this figure at https://oreil.ly/gpam1206)

Finally, when running the last code block, we get Figure 12-7, which shows the
performance of the three models altogether. Here we see that our GNN is even better
than XGBoost and the embedding when looking at that accuracy and precision. The
GNN achieves a smaller recall than the two other models. However, it is still good,
especially compared to XGBoost without embeddings.

288 | Chapter 12: Improving Fraud Detection

https://oreil.ly/gpam1206

Figure 12-7. Performance of XGBoost versus XGBoost + FastRP versus GNN (see a
larger version of this figure at https://oreil.ly/gpam1207)

Chapter Summary
In this chapter, we looked at a specific machine learning problem and compared
three graph-enhanced approaches to solving it. Our platform was the TigerGraph ML
Workbench, which includes sample notebooks and datasets ready to be used on a
TigerGraph Cloud instance.

We first used a traditional decision tree machine learning library, XGBoost, to classify
a dataset of Ethereum transactions into normal accounts and accounts suspected
of committing fraud, using data that included graph-based features like PageRank
and degree. Here, graph data, graph analytics, and even graph machine learning
contributed to the data preparation phase.

We then made the same predictions using a GNN, which took graph relationships
into account during the training phase, resulting in a higher precision model than
was possible with XGBoost.

Connecting with You
We hope our book made a connection with you, in the form of information, insight,
and even some inspiration. We love graphs and graph analytics, so we hope that love
shone through. Our mission was to help you see data as connected entities, to learn to

Connecting with You | 289

https://oreil.ly/gpam1207

view data searches and analytics from a connected-data perspective, and to get started
developing solutions to your own tasks by working with use case starter kits.

From our experience as data analysts, writers, and educators, we know that not every‐
thing makes sense the first time. Doing some hands-on exercises with the TigerGraph
starter kits or other tutorials is the best way to help you connect the dots and to
see for yourself what might be the next step. Moreover, this field is still growing and
evolving rapidly, as is the TigerGraph product. We’ll post corrections and updates to
the book, supplemental materials, and general FAQs at https://github.com/TigerGraph-
DevLabs/Book-graph-powered-analytics.

We would love your feedback. You can reach out to us collectively at
gpaml.book@gmail.com.

Thank you, and happy exploring!

290 | Chapter 12: Improving Fraud Detection

https://github.com/TigerGraph-DevLabs/Book-graph-powered-analytics
https://github.com/TigerGraph-DevLabs/Book-graph-powered-analytics
mailto:gpaml.book@gmail.com

Index

Symbols
+= operator, 61
-> operator, 97
@ prefix, 61
@@ prefix, 61
@@edges_to_display, 107
@@num_invited_persons, 106
@@num_referrals_created accumulator, 156
@@order_product_heap, 169
@@output_edges, 84, 86
@@output_vertices, 84, 86
@@receiver_set, 109, 110
@@sender_set, 109, 110
@@total_amount_sent, 106
@from_receiver, 109
@max_score accumulator, 165
@min_user_id, 262

A
ACCUM clause, 61, 67, 73, 165, 182, 260
accumulators, GSQL, 61, 123
Accuracy module, 283
aggregation, 122-123
aggregation function, GraphSAGE, 240
airline flight routes analysis, 191-193

(see also Graph Algorithms Starter Kit)
alert source tracing query, 188-190
algorithms

defined, 123, 125
deterministic, 123, 125

algo_louvain algorithm, 159
analytics (see graph analytics)
attribute values, matching, 265

B
banned IP addresses, 182
Berners-Lee, Tim, 2
betweenness centrality, 130, 196, 282, 284
BFS (breadth-first search), 25, 120-121

parallel processing using, 122
in suspicious IP detection query, 182

BinaryPrecision module, 283
BinaryRecall module, 283
bipartite matching, 141
blind spots, eliminating, 34-35
Blondel, Vincent, 158
BOOL display_edges parameter, 197
BOOL print_results parameter, 197
BOOL wf parameter, 197
breadth-first search (see BFS (breadth-first

search))
Brin, Sergey, 157

C
Cai, Hongyun, 234
calculate route length query, 196
CALL statement, 194
CAPEC (Common Attack Pattern Enumera‐

tions and Classifications) initiative, 176
centrality algorithms, 129-130, 220, 281
Chang, Kevin Chen-Chuan, 234
Chen, Liang, 280
circle detection query, 105, 110-114
circular pattern detection, 111
classification algorithms, 142-145
cliques, 130
closeness centrality, 129, 196-199, 220, 221
Codd, E.F., 1

291

columns, mapping to graph objects, 26, 30-32
Common Attack Pattern Enumerations and

Classifications (CAPEC) initiative, 176
communities, 4

algorithms for defining, 130-134
finding and analyzing, 203-207
merging connected communities, 261-264
structure of, machine learning through, 214
visualizing, 257

complete subgraphs, 130
Comprehensive Survey of Graph Embedding

(Cai, Zheng, and Chang), 234
config.json file, 278, 280, 282
conjunctive path pattern, 271
connected component algorithm, 253
connected components, 130
connections, 1-2, 10

(see also patterns)
extracting intelligence from, 34-34
impact on analysis, 119
meaning derived from, 3
questions about, addressing, 119
searching deeply for connected information,

35-37
connect_jaccard_sim query, 256, 260, 261, 264
connect_weighted_match query, 267, 271
convolution, 235

(see also GCNs (graph convolutional net‐
works))

cosine similarity, 137-139
Crunchbase Starter Kit

startup investment graph, 81
vertices types in, 83

cryptocurrency, 276
Customer 360 (C360) graph, 43, 45-46

(see also TigerGraph)
Customer 360 Starter Kit, 48-50
customer interaction subgraph, 57-61
customer journey query, 57, 62-63
customer journeys, 43-44
customer_interaction query, 57-59
cybersecurity

attack detection, challenges in, 177
cost of attacks, 175-176
cybersecurity system requirements, 177

Cybersecurity Threat Detection Starter Kit
event types, 179
graph schema, 178-180
installing and loading data, 178

queries and analytics
alert source tracing query, 180, 188-190
firewall bypass detection query, 181-182
flooding detection query, 180, 184-186
footprint detection query, 180, 187-188
overview, 180
suspicious IP detection query, 180,

182-183

D
damping parameter, 158
data ambiguity, 39
data analytics, 119, 125

(see also graph analytics)
data breaches (see cybersecurity)
data complexity, schema complexity vs., 194
data representation, evolution of, 1-2
data structure, impact on analysis, 119
data triplets, 37
Datasets.ipynb notebook, 279-280
DeepWalk algorithm, 230-233
degrees query, 282
descriptors, mapping, 26
deterministic algorithms, 123, 125
DFS (depth-first search), 25, 120-121
dimensionality reduction, 229
directed edges, 18

advantages and disadvantages of, 27
defined, 22
paired with reverse directed edges, 27

display_edges parameter, 158, 198
Drug Interaction 360 Graph

graph schema, 69
overview, 68
queries and analytics, 69-77

finding similar reported cases, 70, 71-73
most_reported_drugs_for_company

query, 70, 73-75
top_side_effects_for_top_drugs query,

70, 75-77

E
edges, 2, 5, 18

(see also directed edges; undirected edges)
advantages of, 7
defined, 22
directionality in, 26
mapping tabular data to, 26, 30-32
multiple, 28-29

292 | Index

types of, 18, 27-28
weighting, 40-41

edit distance, 269
embeddings (see graph embeddings)
end_date parameter, 187
entity resolution, 39-40, 251

(see also In-Database Entity Resolution
Starter Kit)

graph-based
learning which entities are same,

249-250
overview, 249-249
resolving entities, 250-250

streaming video on demand (SVoD) market
problem, 247-248

event-centered schema, 29
Explore Graph page, GraphStudio, 257
e_type parameter, 157, 197

F
FastRP embedding, 283, 284, 285, 288
featurizer object, 282
file_path parameter, 158, 159, 198
financial crimes, 111

(see also Fraud and Money Launder‐
ing Detection Starter Kit; TigerGraph
Machine Learning Workbench)

modeling as network patterns, 102-103
overview, 101-102

financial transactions, patterns in, 4
firewall bypass detection query, 181-182
flight routes analysis, 191-193

(see also Graph Algorithms Starter Kit)
dataset)

flooding detection query, 180, 184-186
footprint detection query, 180, 187-188
fraud and money laundering, 276

(see also Fraud and Money Launder‐
ing Detection Starter Kit; TigerGraph
Machine Learning Workbench)

domain-dependent features in detection of,
224

Fraud and Money Laundering Detection Starter
Kit
graph schema, 103-104
installing and loading data, 103
overview, 103
queries and analytics, 104-114

circle detection query, 105, 110-114

invited user behavior query, 105,
106-107

multitransaction query, 105, 108-110
repeated user query, 105
same receiver sender query, 105
transferred amount query, 105

vertex types in, 104
frequent subgraph mining , 214
FROM clause, 260, 271
functionality bypass attack, 181

G
GATs (graph attention neural networks), 238,

287
GCNs (graph convolutional networks), 235-238
GDS (Graph Data Science) Library

documentation for, 282
installing algorithms from, 194-195

get common patients query, 151-153
get top demographic query, 164, 170-172
global graph features, 216
GNNs (graph neural networks), 10

graph convolutional networks (GCNs),
235-238

GraphSAGE, 240-242
overview, 235
to predict fraud accounts, 286

Google Knowledge Graph, 4
Google PageRank algorithm (see PageRank

algorithm)
graph algorithms

centrality algorithms, 129-130
classification algorithms, 142-145
community algorithms, 130-134
cosine similarity and, 137-139
defined, 125
for extracting domain-independent graph

features, 220
from GDS Library, installing, 194-195
Jaccard similarity and, 135-136
library of, 124
neighborhood similarity and, 135
overview, 123
path and tree algorithms, 126-129
prediction algorithms, 142-145
queries and analytics

centrality algorithms, 196
community detection algorithms, 196
path algorithms, 195

Index | 293

_search_for_vertex query, 199-200
role similarity and, 140
RoleSim, 141-142
schema free vs. template algorithms, 194
similarity algorithms, 134-135, 213
SimRank, 140
skill and experience required for using, 124
terminology, 125
as tools, 123-125
in unsupervised machine learning, 215

Graph Algorithms Starter Kit
graph schema, 193-194
installing algorithms from GDS Library,

194-195
installing and loading data, 193
queries and analytics

calculate route length query, 196
for closeness centrality, 196-199
finding and analyze communities,

203-207
modifying GSQL algorithm to customize

output, 200-202
shortest path algorithm, 199-200
tg_closeness_cent query, 197-199
utility queries, 195

graph analytics
aggregation in, 122-123
benefits of, 9, 119
defined, 120, 125
difference from data analytics, 119
difference from tabular analytics, 120
graph traversal methods, 120-121
parallel processing and, 122-122
patterns and, 9
reading relevant data, 120
for recommendation systems, 38
requirements for, 120

graph attention neural networks (GATs), 238,
287

graph convolutional networks (GCNs), 235-238
graph embeddings, 10

DeepWalk algorithm, 230-233
as form of dimensionality reduction, 229
general discussion, 225-229
Node2vec algorithm, 233-235
random walk-based embeddings, 229-230
as representation learning, 229

Graph Feature Engineering section, of Work‐
bench, 282-283

graph neural networks (see GNNs (graph neu‐
ral networks))

graph power
360 view, 34
blind spots, eliminating, 34-35
connecting dots in graph, 33-34
detecting patterns and extracting intelli‐

gence from connections, 34-34
inferring and predicting from graph data,

34-35
overview, 33

graph representation learning, 10
graph schema, 22-24

adapting over time, 32-33
adjusting based on use case, 29-30
complexity of vs. data complexity, 194
in Cybersecurity Threat Detection Starter

Kit, 178-180
defined, 22
in Drug Interaction 360 Graph, 69
event-centered, 29
in Fraud and Money Laundering Detection

Starter Kit, 103-104
in Graph Algorithms Starter Kit, 193-194
in In-Database Entity Resolution Starter Kit,

251-252
in Recommendation Engine 2.0 Starter Kit,

162-163
schema options and trade-offs, 26-30
startup investment graph, 82-83
in TigerGraph Machine Learning Work‐

bench, 280-282
user-centered, 30

graph-based entity resolution, 251
(see also In-Database Entity Resolution

Starter Kit)
learning which entities are same, 249-250
overview, 249-249
resolving entities, 250

graphlets, 218-220
graphs, 41

(see also graph power)
benefits in analytics, 9
communities and, 4
converting tabular data into, 26, 30-32
defined, 2, 22
extracting features from using machine

learning, 244
domain-dependent features, 222-225

294 | Index

domain-independent features, 216-222
graph embeddings, 225-235
overview, 215-216

importance of structure, 3-4
modeling relationships in, 2
native, vs. graphs on top of tabular database,

8
patterns of connections in, 4-5
performance advantages of, 5-8
vs. relational databases, 3, 5-8, 17
small-world graphs, 35
vs. tables, 3, 4, 17
terminology, 16-22
traversing, 24-25, 120-121, 122, 125
vs. tables, 5-8
Web's effect on, 3-3

GraphSAGE, 240-242
GraphStudio, 43

(see also GSQL)
designing graph schema, 51-54
loading data, 54
overview, 51
queries and analytics, 55-57

GSQL, 55-57
accumulators, 61, 123
composing as multistage procedures, 74
customer_journey query, 62
printing vertices, 86
query structure, 61-61
schema-free algorithms, 194
subqueries in, 156
tuples, 96
user-defined functions (UDFs), 271

GSQL Graph Data Science Library, 157

H
Hamilton, William, 240
harmonic centrality, 129
HAVING clause, 110, 165, 263
Healthcare Referral Network Starter Kit

graph schema, 149-150
overview, 149
queries and analytics, 151-159

finding influential doctors, 151, 157-158
finding referral community, 151,

158-159
get common patients query, 151-153
inferring referral network, 151, 154-156

healthcare referrals, 147, 148

(see also referral networks)
HeapAccum, 93, 96, 98, 167, 169
Hong, Hui, 141
hops, 24-25

circular pattern detection and, 111
reaching many vertices in few, 35

hyperparameters, 286

I
MST (minimal spanning tree) problem, 129
In-Database Entity Resolution Starter Kit

graph schema, 251-252
installing and loading data, 251
queries and analytics

Jaccard similarity, 254-265
overview, 253
scoring exact and approximate matches,

265-273
indexes, 6-7
inductive learning, 241
“Inductive Representation Learning on Large

Graphs” (Hamilton, Ying and Leskovec),
240

initialize_users query, 254, 265, 266, 273
INT max_hops parameter, 197
INT top_k parameter, 197
interaction events, modeling, 28-29
inverse transaction frequency, 281
investor successful exits query, 83, 87-90
invited user behavior query, 105, 106-107
IP addresses, banned, 182

J
Jaccard similarity, 64, 66, 67, 135-136, 213

in Drug Interaction 360 Graph, 71-73
in implementation of graph-based entity

resolution
initialization, 254-255
merging connected communities,

261-264
similarity detection, 255-261

for vertex classification, 144
jaccard_nbor_reaction query, 71
Jeh, Glen, 140
Jin, Ruoming, 141
Jupyter Notes, 279-280
JW (Jaro-Winkler) similarity, 269-271

Index | 295

K
k-core, 130
key -> value pair, 97
key role discovery, 83, 84
Kipf, Thomas, 235
Kiselev, Dmitrii, 234
kNN (k-nearest neighbors) algorithm, 143
Knowledge Graph, 4
Kronecker delta function, 133

L
Lee, Victor E. , 141
Leiden algorithm, 214
Leskovec, Jure, 240
LIMIT clause, 94, 166, 167
linear relationship, 37
link prediction, 144
local graph features, 216
Louvain algorithm, 133, 158, 214, 281
lower(trim()) function, 85

M
machine learning (ML), 9

(see also TigerGraph Machine Learning
Workbench)

extracting graph features, 244
domain-dependent features, 222-225
domain-independent features, 216-222
graph embeddings, 225-234
overview, 215-216

graph neural networks (GNNs)
graph convolutional networks (GCN),

235-238
GraphSAGE, 240-242
overview, 235

graph-enhanced, 9-10
pattern discovery and feature extraction

methods, 244
reinforcement learning, 213
supervised learning, 213, 216
unsupervised learning with graph algo‐

rithms, 213-215
use cases for machine learning tasks,

243-243
Makarov, Ilya, 234
map type attribute, 265
MapAccum, 96, 123, 187
maps, 96

matching records, 39
matrix algebra formulation, 238
MaxAccum, 166, 188
max_change parameter, 157
max_hops parameter, 198
max_iter parameter, 157
mean deviation

in flooding detection query, 184-186
in footprint detection query, 187

merge_connected_users algorithm, 261, 262,
264, 272

merging records, 40
Milgram, Stanley, 35
ML (see machine learning (ML))
modularity-based algorithms, 214
modularity-based community algorithms, 132,

133
modules, 159
money laundering (see financial crimes)
MST (minimal spanning tree) problem, 128
multihop queries, 81
multiple edges, 28-29
multitransaction query, 105, 108-110

N
neighborhood similarity, 135
neighborLoader method, 286
Nikitinsky, Nikita, 234
Node2vec algorithm, 233-235
nodes (see vertices)
normalizing scores, 138
n_sigma parameter, 184, 187

O
one-hot encoding, 232
ORDER BY clause, 94, 166, 167
outlier detection

in flooding detection query, 184, 186
in footprint detection query, 187
using machine learning, 213

output_level parameter, 159
out_degree function, 71

P
Page, Larry, 157
PageRank algorithm, 124, 157, 193, 214, 281,

282, 284
as centrality algorithm, 130

296 | Index

edge weighting in, 41
input parameters for, 157-158

parallel aggregation, using accumulators for,
123

parallel processing, 122
path and tree algorithms, 126-129
patterns, 4, 34-34, 37-39

analytics and, 9
circular pattern detection, 111
data triplets, 37
finding using machine learning, 214-215,

244
interpreting, ease of, 37
modeling financial crimes as, 102-103
recommendation analytics and, 38
shapes of, 37
subgraph (graphlets), 218-220

phishing scams, 280-282
“Phishing Scams Detection in Ethereum Trans‐

action Network” (Chen et al.), 280
POST-ACCUM clause, 67, 73, 260
prediction algorithms, 142-145
PRINT statements, in subqueries, 156
print_accum parameter, 158, 159
print_results parameter, 198
properties, 19-20

defined, 22
mapping tabular data to, 26, 30-32

pyTigerGraph library, 277, 286

R
random surfer model, 130
random walk-based embeddings, 229-230
ranking algorithms, 220
recommend by features and context query, 164,

164-167
recommend products by customer and context

query, 164, 167-169
recommendation analytics, 38
Recommendation Engine 2.0 Starter Kit

graph schema, 162-163
overview, 162
queries and analytics

get top demographic query, 164, 170-172
recommend by features and context

query, 164-167
recommend products by customer and

context query, 164, 167-169
recommendation engines, 160-161

referential authority, 130
referral networks, 148-149

(see also Healthcare Referral Network
Starter Kit)

reinforcement learning, 213
relational databases

vs. graphs, 3, 5-8, 17
migrating data to graph from, 30-32

relationships
mapping, 26
meaning derived from, 1
modeling in graphs, 2

repeated user query, 105
representation learning, 229
result_attr parameter, 158, 159, 198
reverse directed edges, 27
rev_e_type parameter, 197
role similarity, 140
RoleSim, 214
rule-based systems, in transaction monitoring,

102-103

S
same receiver sender query, 105
SameAs edges, 253, 261, 268, 271
Same_As edges, 256, 262, 267
SCC (strongly connected component), 131,

196, 203
schema (see graph schema)
schema-free algorithms, 194
score_similar_attributes query, 269, 273
_search_for_vertex query, 199
secondary indexes, 6-7
security (see cybersecurity)
SELECT statement, 260
SELECT-FROM-ACCUM statement, 123
“Semi-Supervised Classification with Graph

Convolutional Networks” (Kipf and Well‐
ing), 235

shortest path algorithm, 194, 195, 199-200
Shortest Path, Weighted algorithm, 195
similar contacts query, 57
similarity algorithms, 39, 134-135, 213
similarity, machine learning through, 213-214
similar_contacts query, 65-66
SimRank, 140, 214
six degrees of separation experiment, 35
skip-grams, 232-233
small-world graphs, 35

Index | 297

split parameter, 159
spreadsheets, 1
standard deviation

in flooding detection query, 184-186
in footprint detection query, 187

star shape pattern, 37
startup investment graph

Crunchbase Starter Kit, 81
graph schema, 82-83
multihop queries in, 81
queries and analytics, 83-98

startup investments
funding events, 80
overview, 79-80
unstructured data in assessment of, 80

start_date parameter, 187
STRING file_path parameter, 197
STRING result_attr parameter, 197
strongly connected component (SCC), 131,

196, 203
structure of data (see data structure)
Subelj, Lovro, 234
supervised learning, 213, 216
suspicious IP detection query, 180, 182-183

T
tables

vs. graphs, 3, 4, 5-8, 17
limitations of, 1-2

tabular analytics, 120
tabular data, converting into graph

mapping columns to vertices, edges, or
properties, 26

mapping data, 30-32
mapping entities, relationships, and descrip‐

tors, 26
mapping information from multiple tables

to one vertex or edge type, 32
optimizing mapping choices, 32

template algorithms, 194
tg_betweenness_cent, 198
tg_closeness_cent algorithm, 197
tg_pagerank algorithm, 157, 282
tg_scc_modified algorithm query, 205
tg_shortest_ss_pos_wt_tb query, 202
360 graphs, 43

(see also Drug Interaction 360 graph;
GraphStudio; TigerGraph)

360 view, 34-35, 43

customer journeys, 43
TigerGraph, 43

(see also GDS (Graph Data Science) Library;
GraphStudio)

Cloud Account, creating, 48
importing starter kit into, 50

TigerGraph Cloud ML Bundle, 277
TigerGraph Machine Learning Workbench

dataset, 280-282
Graph Feature Engineering section, 282-283
using Graph Neural Network (GNN),

286-288
graph schema, 280-282
Jupyter Notes and, 279-280
setting up, 277-279
training traditional models with graph fea‐

tures, 283-285
top startups based on board query, 84, 91-94
top startups based on leader query, 84, 95-98
top_k parameter, 158, 198
transductive learning, 241
transferred amount query, 105
traversing graphs, 24-25
tuples, 96

U
undirected edges, 18

advantages and disadvantages of, 27
defined, 22

unique properties, 39
unsupervised learning with graph algorithms

finding frequent patterns, 214-215
learning through similarity and community

structure, 213-214
overview, 213-213

user-centered schema, 30
util_delete_users query, 264
util_set_weights query, 265, 266, 273

V
vertexSplitter function, 283
vertices, 2, 18

classification of, 142, 143-144
defined, 22
degree of, 133
types in Drug Information model, 69
embedding, 227
in financial transactions, 5
finding shortest path between, 126

298 | Index

linked to related vertices, 29
mapping tabular data to, 26, 30-32
modeling properties as, 20
printing, 86
reaching many in few hops, 35
similarity of, 144
types in Crunchbase Starter Kit, 83
types in Cybersecurity Threat Detection

graph model, 180
types in Fraud and Money Laundering

Detection Starter Kit, 104
types in Healthcare Referral graph model,

149-150
types in Recommendation Engine 2.0 graph

model, 163
types in Salesforce Customer 360 graph

model, 54
vertex features, 216

v_type parameter, 157, 197

W
w window parameter, 232
WCC (weakly connected component), 131
weighted relationships, 40-41

Welling, Max, 235
wf parameter, 198
WHERE clause, 93, 97, 271
Widom, Jennifer, 140
word embedding, 225
word2vec algorithm, 230
World Wide Web

distinction from internet, 2
effect on graphs, 3
importance of data structure on, 2

X
XGBoost algorithm, 285, 288
XGBoost model, 283, 285, 285

Y
Y-shaped graph, 75
Y-shaped pattern, 37
Ying, Rex, 240

Z
Zheng, Vincent W. , 234

Index | 299

About the Authors
Victor Lee is vice president of machine learning and AI at TigerGraph. His PhD
dissertation was on graph-based similarity and ranking. Dr. Lee has coauthored book
chapters on decision trees and dense subgraph discovery. Teaching and training
have also been central to his career journey, with activities ranging from developing
training materials for chip design to writing the first version of TigerGraph’s technical
documentation, from teaching 12 years as a full-time or part-time classroom instruc‐
tor to presenting numerous webinars and in-person workshops.

Phuc Kien Nguyen is a data scientist in anti-money laundering and terrorist financ‐
ing at ABN AMRO Bank. He has engineered transaction filtering solutions and
developed machine learning models to detect high-risk customers for KYC purposes
for more than six years. During his academic career, he focused on information
science, leading him to an MSc in information architecture from Delft University of
Technology.

Alexander Thomas is a former TigerGraph technical writer with a background in
linguistics and education. He loves keeping up with the latest advances in artificial
intelligence and data science and always has several projects going simultaneously.

Colophon
The animal on the cover of Graph-Powered Analytics and Machine Learning with
TigerGraph is a golden-spotted tiger beetle (Cicindela aurulenta). It is native to South
and Southeast Asia, ranging from Nepal and southern China to Indonesia, and can
often be found in sandy habitats, particularly shorelines and sand dunes. Adults grow
up to 20 millimeters in length and have iridescent blue-green bodies with three large
yellow spots on each elytron.

Golden-spotted tiger beetles are aggressive predators that feed on many kinds of
invertebrates. They have keen eyesight and are fast for their size, running down prey
and then catching and dismembering them with their powerful mandibles. Their
larvae feed by lying in wait in vertical burrows, ambushing prey that wander nearby
and dragging them down into their burrows.

Many of the animals on O’Reilly covers are endangered; all of them are important to
the world.

The cover illustration is by Karen Montgomery, based on an antique line engraving
from Wood’s Illustrated Natural History. The cover fonts are Gilroy Semibold and
Guardian Sans. The text font is Adobe Minion Pro; the heading font is Adobe Myriad
Condensed; and the code font is Dalton Maag’s Ubuntu Mono.

	Cover
	TigerGraph
	Copyright
	Table of Contents
	Preface
	Objectives
	Audience and Prerequisites
	Approach and Roadmap
	Conventions Used in This Book
	Using Code Examples
	O’Reilly Online Learning
	How to Contact Us
	Acknowledgments

	Chapter 1. Connections Are Everything
	Connections Change Everything
	What Is a Graph?
	Why Graphs Matter
	Edges Outperform Table Joins

	Graph Analytics and Machine Learning
	Graph-Enhanced Machine Learning

	Chapter Summary

	Part I. Connect
	Chapter 2. Connect and Explore Data
	Graph Structure
	Graph Terminology
	Graph Schemas

	Traversing a Graph
	Hops and Distance
	Breadth and Depth

	Graph Modeling
	Schema Options and Trade-Offs
	Transforming Tables in a Graph
	Model Evolution

	Graph Power
	Connecting the Dots
	The 360 View
	Looking Deep for More Insight
	Seeing and Finding Patterns
	Matching and Merging
	Weighing and Predicting

	Chapter Summary

	Chapter 3. See Your Customers and Business Better: 360 Graphs
	Case 1: Tracing and Analyzing Customer Journeys
	Solution: Customer 360 + Journey Graph
	Implementing the C360 + Journey Graph: A GraphStudio Tutorial
	Create a TigerGraph Cloud Account
	Get and Install the Customer 360 Starter Kit
	An Overview of GraphStudio
	Design a Graph Schema
	Data Loading
	Queries and Analytics

	Case 2: Analyzing Drug Adverse Reactions
	Solution: Drug Interaction 360 Graph
	Implementation
	Graph Schema
	Queries and Analytics

	Chapter Summary

	Chapter 4. Studying Startup Investments
	Goal: Find Promising Startups
	Solution: A Startup Investment Graph
	Implementing a Startup Investment Graph and Queries
	The Crunchbase Starter Kit
	Graph Schema
	Queries and Analytics

	Chapter Summary

	Chapter 5. Detecting Fraud and Money Laundering Patterns
	Goal: Detect Financial Crimes
	Solution: Modeling Financial Crimes as Network Patterns
	Implementing Financial Crime Pattern Searches
	The Fraud and Money Laundering Detection Starter Kit
	Graph Schema
	Queries and Analytics

	Chapter Summary

	Part II. Analyze
	Chapter 6. Analyzing Connections for Deeper Insight
	Understanding Graph Analytics
	Requirements for Analytics
	Graph Traversal Methods
	Parallel Processing
	Aggregation

	Using Graph Algorithms for Analytics
	Graph Algorithms as Tools
	Graph Algorithm Categories

	Chapter Summary

	Chapter 7. Better Referrals and Recommendations
	Case 1: Improving Healthcare Referrals
	Solution: Form and Analyze a Referral Graph
	Implementing a Referral Network of Healthcare Specialists
	The Healthcare Referral Network Starter Kit
	Graph Schema
	Queries and Analytics

	Case 2: Personalized Recommendations
	Solution: Use Graph for Multirelationship-Based Recommendations
	Implementing a Multirelationship Recommendation Engine
	The Recommendation Engine 2.0 Starter Kit
	Graph Schema
	Queries and Analytics

	Chapter Summary

	Chapter 8. Strengthening Cybersecurity
	The Cost of Cyberattacks
	Problem
	Solution
	Implementing a Cybersecurity Graph
	The Cybersecurity Threat Detection Starter Kit
	Graph Schema
	Queries and Analytics

	Chapter Summary

	Chapter 9. Analyzing Airline Flight Routes
	Goal: Analyzing Airline Flight Routes
	Solution: Graph Algorithms on a Flight Route Network
	Implementing an Airport and Flight Route Analyzer
	The Graph Algorithms Starter Kit
	Graph Schema and Dataset
	Installing Algorithms from the GDS Library
	Queries and Analytics

	Chapter Summary

	Part III. Learn
	Chapter 10. Graph-Powered Machine Learning Methods
	Unsupervised Learning with Graph Algorithms
	Learning Through Similarity and Community Structure
	Finding Frequent Patterns

	Extracting Graph Features
	Domain-Independent Features
	Domain-Dependent Features
	Graph Embeddings: A Whole New World

	Graph Neural Networks
	Graph Convolutional Networks
	GraphSAGE

	Comparing Graph Machine Learning Approaches
	Use Cases for Machine Learning Tasks
	Pattern Discovery and Feature Extraction Methods
	Graph Neural Networks: Summary and Uses

	Chapter Summary

	Chapter 11. Entity Resolution Revisited
	Problem: Identify Real-World Users and Their Tastes
	Solution: Graph-Based Entity Resolution
	Learning Which Entities Are the Same
	Resolving Entities

	Implementing Graph-Based Entity Resolution
	The In-Database Entity Resolution Starter Kit
	Graph Schema
	Queries and Analytics
	Method 1: Jaccard Similarity
	Merging
	Method 2: Scoring Exact and Approximate Matches

	Chapter Summary

	Chapter 12. Improving Fraud Detection
	Goal: Improve Fraud Detection
	Solution: Use Relationships to Make a Smarter Model
	Using the TigerGraph Machine Learning Workbench
	Setting Up the ML Workbench
	Working with ML Workbench and Jupyter Notes
	Graph Schema and Dataset
	Graph Feature Engineering
	Training Traditional Models with Graph Features
	Using a Graph Neural Network

	Chapter Summary
	Connecting with You

	Index
	About the Authors
	Colophon

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

