
———————————————————————————————————————

Full Disclosure Report
of the 108T

LDBC Social Network Benchmark
———————————————————————————————————————

LDBC Social Network Benchmark’s Business Intelligence
Workload over TigerGraph

February 10, 2023

Disclaimer: the benchmark results on this report are not official LDBC benchmark results, as they have not been audited.

Executive Summary
Scalability is a critical factor in the design and implementation of graph databases,
especially given the ever-increasing volume of data generated by businesses. In this
context, TigerGraph's recent performance in the LDBC SNB (Social Network Benchmark)
BI (Business Intelligence) workload on the 108T dataset is remarkable, as it demonstrates
the company's ability to scale its graph database seamlessly to accommodate the growth of
data. This builds upon the success reported last year (2022), where TigerGraph completed
the LDBC SNB BI benchmark on the SF-30000 dataset. The results of this benchmark
serve to highlight the importance of scalability in graph databases and confirm
TigerGraph's position as a leading provider in the graph database space.

This report details the full execution of the LDBC SNB BI workload for TigerGraph at the
108TB scale. The benchmark was conducted in accordance with the official benchmark
driver, data, and substitution parameter generator as reported in the LDBC 1T Audit FDR
over TigerGraph and LDBC SF30k FDR over TigerGraph. The 108TB data set was
inflated based on the SF30k dataset and the queries were accordingly modified to activate
the entire graph. The benchmark involved the execution of the queries using five
substitution parameters in each batch, whereas the official benchmark uses 30 different
parameters. The power and throughput benchmark metrics were reported in accordance
with the guidelines specified in the LDBC SNB specification.

TigerGraph is a massively parallel processing (MPP) graph database management system
designed for handling hybrid transaction/analytical processing (HTAP) query workloads. It
is a distributed platform using a native graph storage format with an edge-cut partitioning
strategy. Within this, each graph partition holds a similar amount of vertices and edges and
processes requests in parallel. TigerGraph offers GSQL, a Turing-complete query language
that provides both declarative features (e.g., graph patterns) as well as imperative ones
(e.g. for expressing iterative graph algorithms with loops and accumulator primitives).

The focus of this benchmark test is TigerGraph’s performance on Business Intelligence (BI)
workloads over a sequence of batch-refreshed big graphs. The BI workload includes:

2

https://github.com/trumanWangtg/108TB_trillion_graph_SNB
https://github.com/trumanWangtg/108TB_trillion_graph_SNB
https://ldbcouncil.org/benchmarks/snb/LDBC_SNB_BI_20221109_SF1000_tigergraph.pdf
https://ldbcouncil.org/benchmarks/snb/LDBC_SNB_BI_20221109_SF1000_tigergraph.pdf
https://4114546.fs1.hubspotusercontent-na1.net/hubfs/4114546/Collateral/FINAL-FDR-SF-30k-TigerGraph-AMD.pdf
https://arxiv.org/pdf/2001.02299.pdf

● 20 Read Queries—the majority of OLAP-style iterative and deep-link graph queries
were answered in sub-minute to a couple of minutes. The queries include explosive and
redundant multi-joins and multi-source shortest path problems on a weighted graph.

● Incremental Batch Updates—the graph is mutated by a set of insert and delete
operations. The data to be inserted or deleted are batched for a period of one day.

The following numerical novelties are highlighted in this high-level summary:

● The full source dataset is about 108TB, with a total of 1.619 trillion relationships
and 218 billion vertices.

● The benchmarking process, which included an initial data loading phase, one
power batch run, and one throughput batch run (with each batch executing all BI
queries five times), took a total of 35.4 hours.

● The hardware cost for the benchmarking was $843/hr, and the setup consisted of
72 AWS r6a.48xlarge machines and 432TB GP3 SSD volumes.

● The 108TB data set was an inflation of the LDBC SNB official SF-30000 dataset.
The LDBC SNB schema and BI workload queries were adjusted using advanced
techniques to ensure that the BI queries would activate the whole 108TB data set.

3

Executive Summary 2

1 Experiment Overview 5

2 Methodology for 108TB Graph 6
2.1 Data inflation 6
2.2 Schema change 6
2.3 Query amendment 7

3 System Description and Pricing Summary 8
3.1 Machine overview 8
3.2 CPU details 8
3.3 Memory details 9
3.4 Disk and storage details 9
3.5 Network details 9
3.6 Machine pricing 9
3.7 System version and availability 10

4 Dataset Generation 10
4.1 General information 10
4.2 Data loading and data schema 10
4.3 Data statistics 12

5 Benchmark workflow and implementation 14

6 Performance Results 15

7 Conclusion 18

8 Acknowledgement 19

9 Supplemental Materials 19
A CPU and Memory Details 19
B IO Performance 23
C Dataset Generation Instructions 24
D Data Schema 25

4

1 Experiment Overview

Fig. 1.1 Overview of the LDBC SNB BI workload. The SNB BI driver prompts TigerGraph to
load data, perform one power batch and several throughput batches sequentially. Each
power/throughput batch consists of write (W) and read (R) operations, where write operations
consume inserts/deletes data and read operations run query templates (QT) on substitution
parameters (P1, P2a, P2b, etc.) (source: The LDBC Social Network Benchmark version 2.2.1)

The experiment was performed in accordance with the specifications of the Social
Network Benchmark (SNB). However, the number of substitution parameters used for
executing the queries was reduced to 5 instead of the standard 30, and the 108TB data set
was inflated based on the SF30k dataset. The queries were correspondingly adjusted to
activate the entire graph.

Table 1.1: Benchmark Overview

Artifact Version URL

Specification 2.2.0 https://arxiv.org/pdf/2001.02299v7.pdf

Data generator 0.5.0 https://github.com/ldbc/ldbc_snb_datagen_spark/releases/tag/v0.5.0

Driver and implementations 1.0.2 https://github.com/ldbc/ldbc_snb_bi/releases/tag/v1.0.2

5

https://arxiv.org/pdf/2001.02299.pdf
https://arxiv.org/pdf/2001.02299v7.pdf
https://github.com/ldbc/ldbc_snb_datagen_spark/releases/tag/v0.5.0
https://github.com/ldbc/ldbc_snb_bi/releases/tag/v1.0.2

2 Methodology for 108TB Graph

2.1 Data inflation

The LDBC_SNB SF-30k data generator produces 44TB of raw data, consisting of 36.5TB
in the initial snapshot and 7TB in the form of inserts and deletes. The initial snapshot
includes 36TB of dynamic data, which can be altered through daily batch updates, and less
than 1TB of static data, which remains unchanged, as shown in Fig.2.1.

To increase the volume of data, the 36TB of dynamic vertex and edge types were
replicated three times, including the Comment, the Person, the Post, the Forum, and their
associated edges. This resulted in a total of more than 108TB of raw data loaded into
TigerGraph. For instance, the new graph schema includes Comment1, Comment2, and
Comment3. All dynamic vertex types are connected to the original static vertex types,
forming a single, cohesive graph. As a result, this methodology preserves the realism of
data generated from the LDBC SF30k data generator while ensuring that the adjusted
queries can effectively access the entire 108TB data set.

All implementations can be found here in the GitHub repository.

Fig. 2.1 Methodology of graph inflation from 36TB to 108TB

2.2 Schema change

6

https://github.com/tigergraph/ecosys/tree/ldbc_108T

We tripled the 4 dynamic vertex types, such as the Comment, the Person, the Forum, and the Post
vertex types, and therefore, the 108TB graph schema contains indexed dynamic vertex types.
Use the Comment vertex type as an example, the following DDL tripled the comments graph
elements in three containers, respectively.

CREATE VERTEX Comment1 (PRIMARY_ID id UINT, creationDate INT, locationIP STRING, browserUsed

STRING, content STRING, length UINT) WITH primary_id_as_attribute="TRUE"

CREATE VERTEX Comment2 (PRIMARY_ID id UINT, creationDate INT, locationIP STRING, browserUsed

STRING, content STRING, length UINT) WITH primary_id_as_attribute="TRUE"

CREATE VERTEX Comment3 (PRIMARY_ID id UINT, creationDate INT, locationIP STRING, browserUsed

STRING, content STRING, length UINT) WITH primary_id_as_attribute="TRUE"

We multiplied the edge data without creating new edge types. Instead, we increased both the
source and target endpoints, enabling us to load edge data to specific combinations of source and
target endpoints. This method also facilitates modifying our queries because we can keep the
edge pattern as it is. Use the directed edge CONTAINER_OF and REPLY_OF as examples, the
following DDL connecting the tripled vertex types to their corresponding targeted vertex types
based on type indices.

CREATE DIRECTED EDGE CONTAINER_OF (FROM Forum1, TO Post1 | FROM Forum2, TO Post2 | FROM

Forum3, TO Post3) WITH REVERSE_EDGE="CONTAINER_OF_REVERSE"

CREATE DIRECTED EDGE REPLY_OF (FROM Comment1, TO Comment1 | FROM Comment2, TO Comment2 |

FROM Comment3, TO Comment3 | FROM Comment1, TO Post1 | FROM Comment2, TO Post2 | FROM Comment3, TO

Post3) WITH REVERSE_EDGE="REPLY_OF_REVERSE"

2.3 Query amendment

As we only modified the dynamic vertex types in the schema, the adjusted queries must
substitute the original dynamic vertex types with the multiplied vertex types. No new edge types
were added, so the edge pattern remains unchanged. The static vertex types are connected to all
three groups of dynamic vertex types, enabling the BI queries to access the entire 108TB data
through the static vertex types. For example, the adjusted BI-5 query is:

CREATE OR REPLACE DISTRIBUTED QUERY bi5(STRING tag) SYNTAX v2 {

TYPEDEF TUPLE <UINT personId, UINT replyCount, UINT likeCount, UINT messageCount, UINT score>

RESULT;

HeapAccum<RESULT>(100, score DESC, personId ASC) @@result; SumAccum<UINT> @likeCount;

SumAccum<UINT> @messageCount; SumAccum<UINT> @replyCount;

T = SELECT t FROM Tag:t WHERE t.name == tag;

messages = SELECT m FROM T:t -(<HAS_TAG)- (Comment1|Comment2|Comment3|Post1|Post2|Post3):m;

tmp = SELECT m FROM messages:m -(<LIKES)- (Person1|Person2|Person3):p ACCUM m.@likeCount += 1;

tmp = SELECT m FROM messages:m -(<REPLY_OF)- (Comment1|Comment2|Comment3):c ACCUM m.@replyCount +=

1;

tmp = SELECT p FROM messages:m -(HAS_CREATOR>)- (Person1|Person2|Person3):p

7

ACCUM p.@replyCount += m.@replyCount, p.@likeCount += m.@likeCount, p.@messageCount += 1

POST-ACCUM @@result += RESULT(p.id, p.@replyCount, p.@likeCount, p.@messageCount,

p.@messageCount + 2*p.@replyCount + 10*p.@likeCount);

PRINT @@result as result;}

Note: Most bi queries are modified based on the above implementation and can touch the whole 108TB dataset except 4 querie.
Queries bi-14, bi-15, bi-17, and bi-18 only activate 36T data due to a limitation in TigerGraph v3.7.0 where VERTEX<> does
not support multiple vertex type specifications. These queries only feature one singular dynamic seed vertex in the parameter
field and do not traverse to the joint static vertex, thus leaving other duplicated dynamic vertices untraversed.

3 System Description and Pricing Summary

3.1 Machine overview

The hardware used for benchmarking LDBC-SNB on 108TB are 72 AWS EC2 instances of type
r6a.48xlarge. Amazon EC2 R6a AMD instances are powered by 3rd Generation AMD EPYC
processors and deliver up to 35% better price performance compared to R5a instances and 10%
lower cost than comparable x86-based Amazon instances. These instances are ideal fit for
memory-intensive workloads, such as Graph Databases and Graph Analytics.
The r6a.48xlarge instances feature 192 cores per virtual machine, a high memory depth of 1.5TB
per VM, and a high EBS storage bandwidth of 40Gbps that enables outstanding performance on
even the most complex graph algorithms at scale.

Table 2.1: Machine Type

Number of Virtual Machines 72

Instance Type r6a.48xlarge

Operating System Amazon Linux 2 AMI (HVM) - Kernel 5.10

vCPU 192 cores/node

Memory 1.536T/node

3.2 CPU details

The details below were obtained using the commands cat /proc/cpuinfo (Listing A.1) and
lscpu (Listing A.2).

Table 2.2: CPU details summary

Type AMD® EPYC® 7R13 Processor

8

Total number 2

Cores per CPU 48

Threads per CPU 96

Total threads 192

CPU clock frequency 3.564 GHz

Total cache size per CPU L1d cache: 32K
L1i cache: 32K
L2 cache: 512K
L3 cache: 32768K

3.3 Memory details

The total aggregate size of the memory installed is 110.6 TB. This information was obtained
using the cat /proc/meminfo (Listing A.3) and lshw -C memory (Listing A.4) commands.

3.4 Disk and storage details

Table 2.3: Disk details summary

Disk AWS General Purpose SSD (gp3)

Device Size 6 TB

Max IOPS 16000

Max throughput 1000 MB/s

3.5 Network details
Table 2.4: Network details summary

Instance r6a.48xlarge

Network Bandwidth 50 Gbps

EBS bandwidth 40 Gbps

3.6 Machine pricing
Table 2.5: Pricing Summary

9

https://aws.amazon.com/ebs/general-purpose/
https://aws.amazon.com/ec2/instance-types/r6a/

Item Price

Total AWS EC2 instance cost for 3 years $20,598,810 ($783.82/hr)

Total AWS EC2 volume cost for 3 years $1,503,360 ($41,760/month)

3.7 System version and availability

Table 2.6: System version

System Version License

TigerGraph 3.7.0 Enterprise License provided by TigerGraph

4 Dataset Generation

4.1 General information

As demonstrated in the methodology chapter, the 108TB dataset was inflated based on
SF-30k dataset, and therefore, the following sections focused on the data generation of
SF-30k. Datasets larger than SF10k are currently not available in the official Cloudflare
R2. The dataset and query substitution parameters are generated using the LDBC’s official
data generator v0.5.0 and stored in the GCP bucket hosted by TigerGraph
(gs://ldbc_bi/sf3000and gs://ldbc_bi/parameters_sf3000). The data generation settings of
the LDBC Datagen are described below.

Table 4.1: Datagen settings summary

Data format composite-projected-fk layout, compressed CSV files

Scale factors 30000

4.2 Data loading and data schema

10

https://github.com/ldbc/ldbc_snb_bi/blob/main/snb-bi-pre-generated-data-sets.md
https://github.com/ldbc/ldbc_snb_bi/blob/main/snb-bi-pre-generated-data-sets.md
https://github.com/ldbc/ldbc_snb_datagen_spark
https://github.com/ldbc/ldbc_snb_datagen_spark

The data preprocessing and loading times are reported below. The column Data
preprocessing time shows how much time it took to preprocess the CSV files. For this
benchmark execution, the preprocessing only consisted of decompressing the .csv.gz files.
The column Data loading time shows how long it took to create a graph from the input
CSV files and perform the initial indexing of vertices and edges, including schema setup,
initial data loading, query installation, pre-computation, etc. The initial data loading alone
took 45900 s. The column Total time contains the sum of the data preprocessing and
loading times. The TigerGraph topology data size 44.4 TB and compression ratio are
shown in Fig. 3.1. The TigerGraph data schema is shown in Listing D.1 in Section 9.

The following configurations were updated on top of the default configuration:
gadmin config entry GPE.BasicConfig.Env

● Add “MVExtraCopy=0;” //default is 1; this turns off backup copy

● Add “MaxNumberSegments=1310720;” //default is 131072 which is too small for 108T

gsql

● set segsize_in_bits = 24 //to increase the segment size

gadmin config entry GPE.BasicConfig.Env - gadmin config group timeout

● FileLoader.Factory.DefaultQueryTimeoutSec: 16 -> 6000

● KafkaLoader.Factory.DefaultQueryTimeoutSec: 16 -> 6000

● RESTPP.Factory.DefaultQueryTimeoutSec: 16 -> 6000

11

Fig. 4.1 The disk space consumed by the dataset was 2.43 times smaller once loaded into
TigerGraph

Table 4.2: Data preprocessing and loading times for TigerGraph on 108TB

Data size Data preprocessing time Data loading time Total time

108 TB 8 min (457 s) 12hr45min(45 900s) 12hr53min(46 357s)

4.3 Data statistics
The statistics of the initial state for each vertex and edge type is shown in the following table.

Table. 4.3 Cardinality for each vertex type (total 217.86B vertices)

Vertex Count

Comment1 58,666,958,815

Comment2 58,666,958,815

Comment3 58,666,958,815

Post1 13,148,296,221

12

Post2 13,148,296,221

Post3 13,148,296,221

Forum1 728,629,666

Forum2 728,629,666

Forum3 728,629,666

Person1 74,689,437

Person2 74,689,437

Person3 74,689,437

Company 4,725

University 19,140

City 4,029

Country 333

Continent 18

Tag 48,240

TagClass 213

Subtotal 217,855,799,115

13

Table. 4.4 Cardinality for each edge type (total 1.62T edges)

Edges Count

CONTAINER_OF 39,444,888,663

HAS_CREATOR 215,445,765,108

HAS_INTEREST 5,243,002,503

HAS_MEMBER 271,956,270,042

HAS_MODERATOR 2,185,888,998

HAS_TAG 304,603,732,866

IS_LOCATED_IN 224,076,266

MESG_LOCATED_IN 215,445,765,108

KNOWS 17,203,410,066

LIKES 370,276,474,926

REPLY_OF 176,000,876,445

STUDY_AT 179,275,377

WORK_AT 487,556,766

HAS_TYPE 16,080

IS_PART_OF 1,454

IS_SUBCLASS_OF 70

Subtotal 1,618,697,000,738

5 Benchmark workflow and implementation

Fig. 5.1 Tests and batches (power and throughput) executed in the BI workload’s workflow
(source: The LDBC Social Network Benchmark version 2.2.1)

14

https://arxiv.org/pdf/2001.02299.pdf

In Fig.5.1, the benchmark consists of load data, power test and throughput test. The power
test, which runs a single power batch, first executes the write operations and then a
sequential execution of individual read query variants. The official benchmark requires 28
query variants x 30 substitution parameters = 840 read queries to be executed, but in this
benchmark, we executed 5 substitution parameters, and thus a total of 28 x 5 = 140
queries.

The throughput test consists of multiple throughput batches. The type and number of
operations in each throughput batch are the same as the power batch. The only difference
is that the throughput test allows the operations executed concurrently. In the current
implementation, the throughput batch is implemented in the same way as power batch
where the write and read operations are performed sequentially.

The implementation is similar to in the previous LDBC audited SF-1000 benchmark.
However, the number of substitution parameters used for executing the queries was
reduced to 5 instead of the standard 30, and the 108TB data set was inflated based on the
SF30k dataset. The queries were correspondingly adjusted to activate the entire graph.

6 Performance Results

Based on the Sec 7.5.4 Scoring Metrics in Specification, the power score, throughput score and
their price adjusted variants per-$ power score and per-$ throughput score are calculated. The
benchmark time shown in Table 6.1 indicates the total elapsed time for both the power and
throughput batch. The power score is calculated as

where is the time in second to perform the writes and , , … are the𝑤 = 15160 𝑞
1
𝑞
2𝑎

𝑞
2𝑏

𝑞
20𝑏

time in second for executing each variant with 30 different substitution parameters. In this
benchmark, , , … are extrapolated by applying a factor of 6 to the time spent on 5𝑞

1
𝑞
2𝑎

𝑞
2𝑏

𝑞
20𝑏

substitution parameters (i.e., the sum column in Table 6.2).
The throughput score is calculated as

15

https://ldbcouncil.org/benchmarks/snb/LDBC_SNB_BI_20221109_SF1000_tigergraph.pdf
https://arxiv.org/pdf/2001.02299v7.pdf

where is the load time and is 12.88 hr, is the number of throughput batch in𝑡
𝑙𝑜𝑎𝑑

𝑛
𝑏𝑎𝑡𝑐ℎ𝑒𝑠

= 1
this benchmark, is the time spent in a throughput batch with 30 substitution parameters𝑡

𝑏𝑎𝑡𝑐ℎ𝑒𝑠
and is 37.9 hr.

The price-adjusted score are
,𝑝𝑜𝑤𝑒𝑟@𝑆𝐹/$ = 𝑝𝑜𝑤𝑒𝑟@𝑆𝐹 × 1000

𝐶𝑜𝑠𝑡

,𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡@𝑆𝐹/$ = 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡@𝑆𝐹 × 1000
𝐶𝑜𝑠𝑡

where the Cost only includes the hardware cost, whereas the specification uses the total cost of
ownership (TCO) that includes both software and hardware cost.

Table 6.1: Summary of results for TigerGraph at 108TB dataset.
The benchmark time includes both the power batch (inserts/deletes+precompute+read)
and the throughput batch (inserts/deletes+precompute+read) elapsed time.

Benchmark time Power@SF Power@SF/$ Throughput@SF Throughput@SF/$

22.67 hr 106 034.76 9.78 26 398.01 2.43

Table 6.2: Detailed power test results for TigerGraph at 108TB dataset. Execution times for five
runs with different substitution parameters per query are reported in seconds.

Query Sum (5 runs) Max. Min. Mean P50 P90 P95 P99

1 190.85 41.77 36.17 38.17 37.20 40.50 41.13 41.64

2a 1356.09 322.91 153.44 271.22 312.56 320.04 321.47 322.62

2b 688.63 161.29 125.84 137.73 136.32 151.55 156.42 160.31

3 1569.73 642.00 195.34 313.95 221.75 507.38 574.69 628.54

4 86.07 18.79 14.77 17.21 17.66 18.45 18.62 18.76

5 276.02 70.10 46.62 55.20 55.43 64.92 67.51 69.58

6 266.63 65.31 47.81 53.33 50.19 61.16 63.24 64.90

7 1068.72 223.63 199.79 213.74 221.30 223.32 223.48 223.60

16

8a 395.34 85.51 73.94 79.07 78.81 83.22 84.36 85.28

8b 227.08 50.60 41.31 45.42 44.49 49.32 49.96 50.47

9 790.82 162.24 150.31 158.16 159.20 161.46 161.85 162.17

10a 867.05 204.22 146.86 173.41 162.77 203.64 203.93 204.16

10b 353.49 100.48 32.47 70.70 76.94 93.09 96.79 99.74

11 211.01 45.90 40.27 42.20 40.61 45.06 45.48 45.82

12 759.12 168.89 136.31 151.82 147.61 166.70 167.79 168.67

13 1780.49 362.29 351.08 356.10 356.33 361.14 361.71 362.17

14a 667.76 138.77 124.42 133.55 135.44 138.23 138.50 138.71

14b 284.12 66.48 46.09 56.82 57.61 63.25 64.87 66.16

15a 897.11 183.40 166.82 179.42 182.41 183.01 183.20 183.36

15b 3004.23 664.72 509.15 600.85 627.38 652.41 658.57 663.49

16a 1728.39 411.64 245.30 345.68 359.15 406.70 409.17 411.15

16b 418.36 86.47 79.16 83.67 84.10 86.28 86.38 86.45

17 548.34 113.44 104.09 109.67 110.01 112.79 113.12 113.38

18 1156.12 234.36 227.99 231.22 231.33 233.42 233.89 234.27

19a 262.11 55.64 49.01 52.42 52.31 54.65 55.14 55.54

19b 260.12 56.13 48.59 52.02 51.82 55.33 55.73 56.05

20a 77.12 36.20 8.87 15.42 9.49 27.06 31.63 35.29

20b 86.69 27.06 11.59 17.34 16.09 23.19 25.12 26.67

17

Table 6.3: Operations in the power test for TigerGraph at 108TB dataset. Execution times are
reported in seconds. ROOT_POST1 pre-computations are performed for each Comment insertion
and deletion operation. Therefore, they are reported as part of the writes.

Operation Time (hh:mm:ss) Time (seconds)
Total read time (5 runs) 5:37:57 20,277.70
Total write time 4:12:40 15,160.01
Precomputation for Q4 0:06:22 382.08
Precomputation for Q6 0:15:59 959.31
Precomputation for Q14 and Q19 2:04:53 7,493.26
Precomputation for Q20 0:06:17 376.55

7 Conclusion

The benchmark in this report showcases TigerGraph's scalability in graph analytics and business
intelligence on graph-structured data at a scale of hundreds of terabytes. The new LDBC SNB BI
workloads include two challenges: a micro-batch of insert and delete operations to modify the
current graph, and complex read queries that access a substantial portion of the data. These
queries were designed based on choke points and challenging aspects of query processing, such
as multi-joins that are both explosive and redundant, and expressive pathfinding.

TigerGraph was able to effectively handle deep-link OLAP style queries on a big graph of 217.9
billion vertices and 1.6 trillion edges. Eleven of the data-intensive read queries returned results
within 1 minute, while the rest took between 1 and 10 minutes.

The R6a instances have proven capable of meeting the objectives of the 108TB SNB BI
benchmark, and they exhibit excellent scalability as dataset sizes increase. As such, they are
highly recommended for large-scale deployments that demand powerful and adaptable
computing infrastructure.

This benchmark demonstrates TigerGraph's capability to handle big graph workloads in a
real-world production environment, where daily or hourly incremental updates of tens of
terabytes of connected data are common. To the best of our knowledge, no other graph database
or relational database vendor has demonstrated similar analytical and operational capabilities on
such a large-scale, updatable graph.

—————————————————
1In the precomputation phase, an auxiliary edge is added between each comment and its root Post. This edge is called ROOT_POST

18

8 Acknowledgement

The cloud computing cost used in this benchmark is funded by AMD and is gratefully
acknowledged.

9 Supplemental Materials

A CPU and Memory Details

Listing A.1: Output of the cat /proc/cpuinfo command for a single CPU core

processor : 191
vendor_id : AuthenticAMD
cpu family : 25
model : 1
model name : AMD EPYC 7R13 Processor
stepping : 1
microcode : 0xa001173
cpu MHz : 3358.650
cache size : 512 KB
physical id : 1
siblings : 96
core id : 55
cpu cores : 48
apicid : 239
initial apicid : 239
fpu : yes
fpu_exception : yes
cpuid level : 16
wp : yes
flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush mmx
fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl nonstop_tsc
cpuid extd_apicid aperfmperf tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16 pcid sse4_1 sse4_2
x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm sse4a
misalignsse 3dnowprefetch topoext perfctr_core invpcid_single ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1
avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero
xsaveerptr rdpru wbnoinvd arat npt nrip_save vaes vpclmulqdq rdpid
bugs : sysret_ss_attrs null_seg spectre_v1 spectre_v2 spec_store_bypass
bogomips : 5299.97
TLB size : 2560 4K pages
clflush size : 64
cache_alignment : 64
address sizes : 48 bits physical, 48 bits virtual
power management:

19

Listing A.2: Output of the lscpu command

Architecture: x86_64
CPU op-mode(s): 32-bit, 64-bit
Byte Order: Little Endian
CPU(s): 192
On-line CPU(s) list: 0-191
Thread(s) per core: 2
Core(s) per socket: 48
Socket(s): 2
NUMA node(s): 4
Vendor ID: AuthenticAMD
CPU family: 25
Model: 1
Model name: AMD EPYC 7R13 Processor
Stepping: 1
CPU MHz: 3563.865
BogoMIPS: 5299.97
Hypervisor vendor: KVM
Virtualization type: full
L1d cache: 32K
L1i cache: 32K
L2 cache: 512K
L3 cache: 32768K
NUMA node0 CPU(s): 0-23,96-119
NUMA node1 CPU(s): 24-47,120-143
NUMA node2 CPU(s): 48-71,144-167
NUMA node3 CPU(s): 72-95,168-191
Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36
clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good
nopl nonstop_tsc cpuid extd_apicid aperfmperf tsc_known_freq pni pclmulqdq monitor ssse3 fma cx16
pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy
cr8_legacy abm sse4a misalignsse 3dnowprefetch topoext perfctr_core invpcid_single ssbd ibrs ibpb
stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni
xsaveopt xsavec xgetbv1 clzero xsaveerptr rdpru wbnoinvd arat npt nrip_save vaes vpclmulqdq rdpid

Listing A.3: Output of the cat /proc/meminfo command

MemTotal: 1552189116 kB
MemFree: 494708720 kB
MemAvailable: 1362323316 kB
Buffers: 2704 kB
Cached: 873227972 kB
SwapCached: 0 kB
Active: 47234164 kB
Inactive: 1005192256 kB
Active(anon): 177428 kB
Inactive(anon): 179360420 kB
Active(file): 47056736 kB
Inactive(file): 825831836 kB
Unevictable: 0 kB
Mlocked: 0 kB
SwapTotal: 0 kB
SwapFree: 0 kB
Dirty: 241444 kB
Writeback: 0 kB

20

AnonPages: 179185916 kB
Mapped: 448420 kB
Shmem: 415480 kB
KReclaimable: 2434316 kB
Slab: 3200796 kB
SReclaimable: 2434316 kB
SUnreclaim: 766480 kB
KernelStack: 109472 kB
PageTables: 468372 kB
NFS_Unstable: 0 kB
Bounce: 0 kB
WritebackTmp: 0 kB
CommitLimit: 776094556 kB
Committed_AS: 45633820 kB
VmallocTotal: 34359738367 kB
VmallocUsed: 540292 kB
VmallocChunk: 0 kB
Percpu: 58368 kB
HardwareCorrupted: 0 kB
AnonHugePages: 0 kB
ShmemHugePages: 0 kB
ShmemPmdMapped: 0 kB
FileHugePages: 0 kB
FilePmdMapped: 0 kB
HugePages_Total: 0
HugePages_Free: 0
HugePages_Rsvd: 0
HugePages_Surp: 0
Hugepagesize: 2048 kB
Hugetlb: 0 kB
DirectMap4k: 911208 kB
DirectMap2M: 92338176 kB
DirectMap1G: 1483735040 kB

Listing A.4: Output of the lshw -C memory command

*-firmware
description: BIOS
vendor: Amazon EC2
physical id: 0
version: 1.0
date: 10/16/2017
size: 64KiB
capacity: 64KiB
capabilities: pci edd acpi virtualmachine

*-cache:0
description: L1 cache
physical id: 6
slot: L1 - Cache
size: 3MiB
capacity: 3MiB
clock: 1GHz (1.0ns)
capabilities: pipeline-burst internal write-back unified
configuration: level=1

*-cache:1
description: L2 cache
physical id: 7
slot: L2 - Cache
size: 24MiB
capacity: 24MiB

21

clock: 1GHz (1.0ns)
capabilities: pipeline-burst internal write-back unified
configuration: level=2

*-cache:2
description: L3 cache
physical id: 8
slot: L3 - Cache
size: 192MiB
capacity: 192MiB
clock: 1GHz (1.0ns)
capabilities: pipeline-burst internal write-back unified
configuration: level=3

*-cache:0
description: L1 cache
physical id: 9
slot: L1 - Cache
size: 3MiB
capacity: 3MiB
clock: 1GHz (1.0ns)
capabilities: pipeline-burst internal write-back unified
configuration: level=1

*-cache:1
description: L2 cache
physical id: a
slot: L2 - Cache
size: 24MiB
capacity: 24MiB
clock: 1GHz (1.0ns)
capabilities: pipeline-burst internal write-back unified
configuration: level=2

*-cache:2
description: L3 cache
physical id: b
slot: L3 - Cache
size: 192MiB
capacity: 192MiB
clock: 1GHz (1.0ns)
capabilities: pipeline-burst internal write-back unified
configuration: level=3

*-memory
description: System Memory
physical id: c
slot: System board or motherboard
size: 1536GiB

*-bank:0
description: DIMM DDR4 Static column Pseudo-static Synchronous Window DRAM 3200 MHz (0.3 ns)
physical id: 0
size: 384GiB
width: 64 bits
clock: 3200MHz (0.3ns)

*-bank:1
description: DIMM DDR4 Static column Pseudo-static Synchronous Window DRAM 3200 MHz (0.3 ns)
physical id: 1
size: 384GiB
width: 64 bits
clock: 3200MHz (0.3ns)

*-bank:2
description: DIMM DDR4 Static column Pseudo-static Synchronous Window DRAM 3200 MHz (0.3 ns)
physical id: 2
size: 384GiB
width: 64 bits
clock: 3200MHz (0.3ns)

*-bank:3
description: DIMM DDR4 Static column Pseudo-static Synchronous Window DRAM 3200 MHz (0.3 ns)
physical id: 3

22

size: 384GiB
width: 64 bits
clock: 3200MHz (0.3ns)

B IO Performance
Listing B.1: Output of the fio command

read_iops_test: (g=0): rw=randread, bs=4K-4K/4K-4K/4K-4K, ioengine=libaio, iodepth=256
fio-2.14
Starting 1 process
read_iops_test: Laying out IO file(s) (1 file(s) / 3072MB)

read_iops_test: (groupid=0, jobs=1): err= 0: pid=19706: Wed Jan 25 22:12:56 2023
read : io=3725.3MB, bw=63559KB/s, iops=15885, runt= 60017msec
slat (usec): min=1, max=1830, avg=61.14, stdev=168.97
clat (usec): min=2579, max=42430, avg=16050.40, stdev=536.08
lat (usec): min=2629, max=42432, avg=16112.55, stdev=536.66
clat percentiles (usec):
| 1.00th=[15296], 5.00th=[15424], 10.00th=[15552], 20.00th=[15680],
| 30.00th=[15808], 40.00th=[15936], 50.00th=[15936], 60.00th=[16064],
| 70.00th=[16192], 80.00th=[16512], 90.00th=[16768], 95.00th=[16768],
| 99.00th=[17280], 99.50th=[17280], 99.90th=[18816], 99.95th=[22912],
| 99.99th=[27776]
lat (msec) : 4=0.01%, 10=0.04%, 20=99.90%, 50=0.08%

cpu : usr=1.02%, sys=3.45%, ctx=115874, majf=0, minf=1
IO depths : 1=0.1%, 2=0.1%, 4=0.1%, 8=0.1%, 16=0.1%, 32=0.1%, >=64=105.0%

submit : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%, >=64=0.0%
complete : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%, >=64=0.1%
issued : total=r=953407/w=0/d=0, short=r=0/w=0/d=0, drop=r=0/w=0/d=0
latency : target=0, window=0, percentile=100.00%, depth=256

Run status group 0 (all jobs):
READ: io=3725.3MB, aggrb=63559KB/s, minb=63559KB/s, maxb=63559KB/s, mint=60017msec, maxt=60017msec

Disk stats (read/write):
nvme0n1: ios=1001100/8030, merge=0/255, ticks=15546244/82632, in_queue=15628876, util=100.00%

23

C Dataset Generation Instructions

The datasets can be generated using the LDBC SNB Datagen. To regenerate the data sets
used in this benchmark, build the Datagen JAR as described in the project’s README,
configure the AWS EMR environment, upload the JAR to the S3 bucket (denoted as
${BUCKET_NAME}) and run the following commands to generate the datasets used in this audit.

Note that while the datasets for TigerGraph were generated as gzip-compressed archives,
they are decompressed during preprocessing.

Listing C.1: Script to generate the SF30000 dataset for TigerGraph in AWS EMR. This dataset is
used for the benchmark run

1 export SCALE_FACTOR=30000
2 export JOB_NAME=sf${SCALE_FACTOR}-projected-csv-gz
3
4 ./tools/emr/submit_datagen_job.py \
5 --use-spot \
6 --bucket ${BUCKET_NAME} \
7 --copy-all \
8 --az us-east-2c \
9 ${JOB_NAME} \
10 ${SCALE_FACTOR} \
11 csv \
12 bi \
13 -- \
14 --explode-edges \
15 --format-options compression=gzip \
16 --generate-factors

24

D Data Schema

Listing D.1: Content of the GSQL schema used by TigerGraph

Message

CREATE VERTEX Comment1 (PRIMARY_ID id UINT, creationDate INT, locationIP STRING, browserUsed STRING, content STRING, length UINT) WITH

primary_id_as_attribute="TRUE"

CREATE VERTEX Comment2 (PRIMARY_ID id UINT, creationDate INT, locationIP STRING, browserUsed STRING, content STRING, length UINT) WITH

primary_id_as_attribute="TRUE"

CREATE VERTEX Comment3 (PRIMARY_ID id UINT, creationDate INT, locationIP STRING, browserUsed STRING, content STRING, length UINT) WITH

primary_id_as_attribute="TRUE"

CREATE VERTEX Post1 (PRIMARY_ID id UINT, imageFile STRING, creationDate INT, locationIP STRING, browserUsed STRING, language STRING,

content STRING, length UINT) WITH primary_id_as_attribute="TRUE"

CREATE VERTEX Post2 (PRIMARY_ID id UINT, imageFile STRING, creationDate INT, locationIP STRING, browserUsed STRING, language STRING,

content STRING, length UINT) WITH primary_id_as_attribute="TRUE"

CREATE VERTEX Post3 (PRIMARY_ID id UINT, imageFile STRING, creationDate INT, locationIP STRING, browserUsed STRING, language STRING,

content STRING, length UINT) WITH primary_id_as_attribute="TRUE"

organisation

CREATE VERTEX Company (PRIMARY_ID id UINT, name STRING, url STRING) WITH primary_id_as_attribute="TRUE"

CREATE VERTEX University (PRIMARY_ID id UINT, name STRING, url STRING) WITH primary_id_as_attribute="TRUE"

place

CREATE VERTEX City (PRIMARY_ID id UINT, name STRING, url STRING) WITH primary_id_as_attribute="TRUE"

CREATE VERTEX Country (PRIMARY_ID id UINT, name STRING, url STRING) WITH primary_id_as_attribute="TRUE"

CREATE VERTEX Continent (PRIMARY_ID id UINT, name STRING, url STRING) WITH primary_id_as_attribute="TRUE"

etc

CREATE VERTEX Forum1 (PRIMARY_ID id UINT, title STRING, creationDate INT,

maxMember UINT) WITH primary_id_as_attribute="TRUE" // maxMember is for precompute in BI-4

CREATE VERTEX Forum2 (PRIMARY_ID id UINT, title STRING, creationDate INT,

maxMember UINT) WITH primary_id_as_attribute="TRUE" // maxMember is for precompute in BI-4

CREATE VERTEX Forum3 (PRIMARY_ID id UINT, title STRING, creationDate INT,

maxMember UINT) WITH primary_id_as_attribute="TRUE" // maxMember is for precompute in BI-4

CREATE VERTEX Person1 (PRIMARY_ID id UINT, firstName STRING, lastName STRING, gender STRING, birthday INT, creationDate INT, locationIP

STRING, browserUsed STRING, speaks SET<STRING>, email SET<STRING>,

popularityScore UINT) WITH primary_id_as_attribute="TRUE" // popularityScore is for precompute in BI-6

CREATE VERTEX Person2 (PRIMARY_ID id UINT, firstName STRING, lastName STRING, gender STRING, birthday INT, creationDate INT, locationIP

STRING, browserUsed STRING, speaks SET<STRING>, email SET<STRING>,

popularityScore UINT) WITH primary_id_as_attribute="TRUE" // popularityScore is for precompute in BI-6

CREATE VERTEX Person3 (PRIMARY_ID id UINT, firstName STRING, lastName STRING, gender STRING, birthday INT, creationDate INT, locationIP

STRING, browserUsed STRING, speaks SET<STRING>, email SET<STRING>,

popularityScore UINT) WITH primary_id_as_attribute="TRUE" // popularityScore is for precompute in BI-6

CREATE VERTEX Tag (PRIMARY_ID id UINT, name STRING, url STRING) WITH primary_id_as_attribute="TRUE"

CREATE VERTEX TagClass (PRIMARY_ID id UINT, name STRING, url STRING) WITH primary_id_as_attribute="TRUE"

create edge

CREATE DIRECTED EDGE CONTAINER_OF (FROM Forum1, TO Post1 | FROM Forum2, TO Post2 | FROM Forum3, TO Post3) WITH

REVERSE_EDGE="CONTAINER_OF_REVERSE"

CREATE DIRECTED EDGE HAS_CREATOR (FROM Comment1, TO Person1 | FROM Comment2, TO Person2 | FROM Comment3, TO Person3 | FROM Post1, TO

Person1 | FROM Post2, TO Person2 | FROM Post3, TO Person3) WITH REVERSE_EDGE="HAS_CREATOR_REVERSE"

CREATE DIRECTED EDGE HAS_INTEREST (FROM Person1|Person2|Person3, TO Tag) WITH REVERSE_EDGE="HAS_INTEREST_REVERSE"

25

CREATE DIRECTED EDGE HAS_MEMBER (FROM Forum1, TO Person1 | FROM Forum2, TO Person2 | FROM Forum3, TO Person3, creationDate INT) WITH

REVERSE_EDGE="HAS_MEMBER_REVERSE"

CREATE DIRECTED EDGE HAS_MODERATOR (FROM Forum1, TO Person1 | FROM Forum2, TO Person2 | FROM Forum3, TO Person3) WITH

REVERSE_EDGE="HAS_MODERATOR_REVERSE"

CREATE DIRECTED EDGE HAS_TAG (FROM Comment1|Comment2|Comment3|Post1|Post2|Post3|Forum1|Forum2|Forum3, TO Tag) WITH

REVERSE_EDGE="HAS_TAG_REVERSE"

CREATE DIRECTED EDGE HAS_TYPE (FROM Tag, TO TagClass) WITH REVERSE_EDGE="HAS_TYPE_REVERSE"

CREATE DIRECTED EDGE IS_LOCATED_IN (FROM Company, TO Country | FROM Person1, TO City | FROM Person2, TO City | FROM Person3, TO City |

FROM University, TO City) WITH REVERSE_EDGE="IS_LOCATED_IN_REVERSE"

CREATE DIRECTED EDGE MESG_LOCATED_IN (FROM Comment1|Comment2|Comment3|Post1|Post2|Post3, TO Country) // Reverse edge of

Comment1|Comment2|Comment3/Post1|Post2|Post3 -IS_Located_IN-> Country will cause Country connected by too many edges, which makes

loading slow

CREATE DIRECTED EDGE IS_PART_OF (FROM City, TO Country | FROM Country, TO Continent) WITH REVERSE_EDGE="IS_PART_OF_REVERSE"

CREATE DIRECTED EDGE IS_SUBCLASS_OF (FROM TagClass, TO TagClass) WITH REVERSE_EDGE="IS_SUBCLASS_OF_REVERSE"

CREATE UNDIRECTED EDGE KNOWS (FROM Person1, TO Person1 | FROM Person2, TO Person2 | FROM Person3, TO Person3, creationDate INT,

weight19 UINT, weight20 UINT DEFAULT 10000)

CREATE DIRECTED EDGE LIKES (FROM Person1, TO Comment1| FROM Person2, TO Comment2 | FROM Person3, TO Comment3 | FROM Person1, TO Post1 |

FROM Person2, TO Post2 | FROM Person3, TO Post3, creationDate INT) WITH REVERSE_EDGE="LIKES_REVERSE"

CREATE DIRECTED EDGE REPLY_OF (FROM Comment1, TO Comment1 | FROM Comment2, TO Comment2 | FROM Comment3, TO Comment3 | FROM Comment1, TO

Post1 | FROM Comment2, TO Post2 | FROM Comment3, TO Post3) WITH REVERSE_EDGE="REPLY_OF_REVERSE"

CREATE DIRECTED EDGE STUDY_AT (FROM Person1|Person2|Person3, TO University, classYear INT) WITH REVERSE_EDGE="STUDY_AT_REVERSE"

CREATE DIRECTED EDGE WORK_AT (FROM Person1|Person2|Person3, TO Company, workFrom INT) WITH REVERSE_EDGE="WORK_AT_REVERSE"

CREATE DIRECTED EDGE ROOT_POST (FROM Comment1, TO Post1 | FROM Comment2, TO Post2 | FROM Comment3, TO Post3) WITH

REVERSE_EDGE="ROOT_POST_REVERSE" //FOR BI-3,9,17

CREATE DIRECTED EDGE REPLY_COUNT (FROM Person1, TO Person1 | FROM Person2, To Person2 | FROM Person3, To Person3, cnt UINT)

CREATE GLOBAL SCHEMA_CHANGE JOB addIndex {

ALTER VERTEX Country ADD INDEX country_name ON (name);

ALTER VERTEX Company ADD INDEX company_name ON (name);

ALTER VERTEX University ADD INDEX university_name ON (name);

ALTER VERTEX Tag ADD INDEX tag_name ON (name);

ALTER VERTEX TagClass ADD INDEX tagclass_name ON (name);

}

RUN GLOBAL SCHEMA_CHANGE JOB addIndex

CREATE GRAPH ldbc_snb (*)

26

