
———————————————————————————————————————

Full Disclosure Report
of the LDBC Social Network

SF30000 Benchmark
———————————————————————————————————————

LDBC Social Network Benchmark’s Business Intelligence
Workload over TigerGraph

November 29, 2022

Disclaimer: the benchmark results on this report are not official LDBC benchmark results, as they have not been audited.

Executive Summary
Last year (2021), we reported an LDBC SNB benchmark at 36 TB size, but at that time the
first version of the BI workload was not finalized. The old benchmark did not follow the
LDBC specifications in several aspects such as the benchmark driver, the generation of
substitution parameters and the benchmark workflow. This new benchmark uses a new
version of TigerGraph with improved performance in loading and querying (e.g., the
loading time is shortened from 35.5 hr to 6.5 hr, and the average query time of the power
batch is shortened from 236.06 s to 99.90 s), and the results are validated by another
database on SF-10.

This report documents a complete execution of the LDBC SNB (Social Network
Benchmark) BI (Business Intelligence) workload for TigerGraph at SF-30k. This
benchmark, pending audit by LDBC, uses the official benchmark driver, query
implementation, data and substitution parameter generator reported in LDBC 1T Audit
FDR over TigerGraph, but on scale-factor 30k this time. The queries were executed using
5 substitution parameters in each batch, whereas the official benchmark uses 30 different
parameters. The power and throughput benchmark metrics are reported following the
guidelines of the LDBC SNB specification.

TigerGraph is a massively parallel processing (MPP) graph database management system
designed for handling hybrid transaction/analytical processing (HTAP) query workloads. It
is a distributed platform using a native graph storage format with an edge-cut partitioning
strategy. Within this, each graph partition holds a similar amount of vertices and edges and
processes requests in parallel. TigerGraph offers GSQL, a Turing-complete query language
that provides both declarative features (e.g., graph patterns) as well as imperative ones
(e.g. for expressing iterative graph algorithms with loops and accumulator primitives).

The focus of this benchmark test is TigerGraph’s performance on Business Intelligence (BI)
workloads over a sequence of batch-refreshed big graphs. The BI workload includes:

● 20 Read Queries—the majority of OLAP-style iterative and deep-link graph queries
were answered in sub-minute to a couple of minutes. The queries include explosive and
redundant multi-joins and multi-source shortest path problems on a weighted graph.

2

https://ldbcouncil.org/benchmarks/snb/LDBC_SNB_BI_20221109_SF1000_tigergraph.pdf
https://ldbcouncil.org/benchmarks/snb/LDBC_SNB_BI_20221109_SF1000_tigergraph.pdf
https://arxiv.org/pdf/2001.02299.pdf

● Incremental Batch Updates—the graph is mutated by a set of insert and delete
operations. The data to be inserted or deleted are batched for a period of one day.

The TigerGraph server is deployed over 36 Amazon Web Service (AWS) r6a.32xlarge instances
with 144TB disk volume. These instances are powered by the 3rd generation AMD EPYC
processors. The following high-level summary highlights the novelties in numbers:

● Overall, the full source dataset is about 36TB, containing 539.6 billion relationships and
72.6 billion vertices.

● Total benchmark time is 19.3 hours, including the initial data loading, 1 power batch run,
and 1 throughput batch run.

● Hardware cost is $281.27/hr, including 36 AWS machines and 144T GP2 SSD volumes.

3

Executive Summary 2

1 Benchmark Overview 5

2 System Description and Pricing Summary 6
2.1 Machine overview 6
2.2 CPU details 6
2.3 Memory details 7
2.4 Disk and storage details 7
2.5 Network details 7
2.6 Machine pricing 7
2.7 System version and availability 7

3 Dataset Generation 8
3.1 General information 8
3.2 Data loading and data schema 8
3.3 Data statistics 8

4 Benchmark workflow and implementation 10

5 Validation of the Results 10

6 Performance Results 11

7 Conclusion 13

8 Acknowledgement 14

9 Supplemental Materials 14
A CPU and Memory Details 14
B IO Performance 18
C Dataset Generation Instructions 19
D Data Schema 20

4

1 Benchmark Overview

Fig. 1.1 Overview of the LDBC SNB BI workload. The SNB BI driver prompts TigerGraph to
load data, perform one power batch and several throughput batches sequentially. Each
power/throughput batch consists of write (W) and read (R) operations, where write operations
consume inserts/deletes data and read operations run query templates (QT) on substitution
parameters (P1, P2a, P2b, etc.) (source: The LDBC Social Network Benchmark version 2.2.1)

The test was conducted in compliance with the Social Network Benchmark’s specification,
except that the queries were executed on 5 substitution parameters instead of 30.

Table 1.1: Benchmark Overview

Artifact Version URL

Specification 2.2.0 https://arxiv.org/pdf/2001.02299v7.pdf

Data generator 0.5.0 https://github.com/ldbc/ldbc_snb_datagen_spark/releases/tag/v0.5.0

Driver and implementations 1.0.2 https://github.com/ldbc/ldbc_snb_bi/releases/tag/v1.0.2

5

https://arxiv.org/pdf/2001.02299.pdf
https://arxiv.org/pdf/2001.02299v7.pdf
https://github.com/ldbc/ldbc_snb_datagen_spark/releases/tag/v0.5.0
https://github.com/ldbc/ldbc_snb_bi/releases/tag/v1.0.2

2 System Description and Pricing Summary

2.1 Machine overview

The hardware used for benchmarking LDBC-SNB on Scale Factor 30k are 36 AWS EC2
instances of type r6a.32xlarge. All of these instances use AMD 3rd-generation processors Milan.

Table 2.1: Machine Type

Number of Virtual Machines 36

Instance Type r6a.32xlarge

Operating System Amazon Linux 2 AMI (HVM) - Kernel 4.14

vCPU 128/node

Memory 1024G/node

2.2 CPU details

The details below were obtained using the commands cat /proc/cpuinfo (Listing A.1) and
lscpu (Listing A.2).

Table 2.2: CPU details summary

Type AMD® EPYC® 7R13 Processor

Total number 2

Cores per CPU 32

Threads per CPU 64

Total threads 128

CPU clock frequency 3.164 GHz

Total cache size per CPU L1d cache: 32K
L1i cache: 32K
L2 cache: 512K
L3 cache: 32768K

6

2.3 Memory details

The total aggregate size of the memory installed is 35.5TB. This information was obtained using
the cat /proc/meminfo (Listing A.3) and lshw -C memory (Listing A.4) commands.

2.4 Disk and storage details

Table 2.3: Disk details summary

Disk AWS General Purpose SSD (gp2)

Device Size 4TB

Max IOPS 12000

Max throughput 250 MB/s

2.5 Network details
Table 2.4: Network details summary

Instance r6a.32xlarge

Network Bandwidth 50 Gbps

EBS bandwidth 26.6 Gbps

2.6 Machine pricing
Table 2.5: Pricing Summary

Item Price

Total AWS EC2 instance cost for 3 years $6,866,176 ($261.27/hr)

Total AWS EC2 volume cost for 3 years $518,400 ($14,400/month)

2.7 System version and availability

Table 2.6: System version

System Version License

TigerGraph 3.7.0 Enterprise License provided by TigerGraph

7

https://docs.aws.amazon.com/AWSEC2/latest/UserGuide/general-purpose.html#EBSVolumeTypes_gp2
https://aws.amazon.com/ec2/instance-types/r6a/

3 Dataset Generation

3.1 General information

Dataset larger than SF10k are currently not available in the official Cloudflare R2. The
dataset and query substitution parameters are generated using the LDBC’s official data
generator v0.5.0 and stored in the GCP bucket hosted by TigerGraph
(gs://ldbc_bi/sf3000and gs://ldbc_bi/parameters_sf3000). The data generation settings of
the LDBC Datagen are described below.

Table 3.1: Datagen settings summary

Data format composite-projected-fk layout, compressed CSV files

Scale factors 30000

3.2 Data loading and data schema

The data preprocessing and loading times are reported below. The column Data
preprocessing time shows how much time it took to preprocess the CSV files. For this
benchmark execution, the preprocessing only consisted of decompressing the .csv.gz files.
The column Data loading time shows how long it took to create a graph from the input
CSV files and perform the initial indexing of vertices and edges, including schema setup,
initial data loading, query installation, pre-computation, etc. The initial data loading alone
took 19703 s. The column Total time contains the sum of the data preprocessing and
loading times. The TigerGraph topology data size and compression ration are shown in
Fig. 3.1. The TigerGraph data schema is shown in Listing D.1 in Section 9.

The following configurations were updated on top of the default configuration:
gadmin config group timeout

● Add “MVExtraCopy=0;” //default is 1; this turns off backup copy.

gadmin config group timeout

● FileLoader.Factory.DefaultQueryTimeoutSec: 16 -> 6000

● KafkaLoader.Factory.DefaultQueryTimeoutSec: 16 -> 6000

● RESTPP.Factory.DefaultQueryTimeoutSec: 16 -> 6000

8

https://github.com/ldbc/ldbc_snb_bi/blob/main/snb-bi-pre-generated-data-sets.md
https://github.com/ldbc/ldbc_snb_datagen_spark
https://github.com/ldbc/ldbc_snb_datagen_spark

Fig. 3.1 The disk space consumed by the dataset was 2.42 times smaller once loaded into
TigerGraph

Table 3.2: Data preprocessing and loading times for TigerGraph on scale factor 30000

Scale factor Data preprocessing time Data loading time Total time

30000 1hr27min (5 214 s) 6h38min (2 3915 s) 8hr5min (29 129 s)

3.3 Data statistics
The statistics of the initial state for each vertex and edge type is shown in the following table.

Table. 3.3 Cardinality for each vertex type (total 72.62B vertices)

Dynamic Static

Vertex Type Name Cardinality
(# of vertices)

Vertex Type Name Cardinality
(# of vertices)

Comment 58,666,958,815 Company 1,575

Post 13,148,296,221 University 6,380

Forum 728,629,666 City 1,343

9

Person 74,689,437 Country 111

Continent 6

Tag 16,080

TagClass 71

Table. 3.4 Cardinality for each edge type (total 539.57B edges)

Edge Type Name Cardinality (# of edges)

CONTAINER_OF 13,148,296,221

HAS_CREATOR 71,815,255,036

HAS_INTEREST 1,747,667,501

HAS_MEMBER 90,652,090,014

HAS_MODERATOR 728,629,666

HAS_TAG 101,534,577,622

IS_LOCATED_IN 74,697,392

MESG_LOCATED_IN 71,815,255,036

KNOWS 5,734,470,022

LIKES 123,425,491,642

REPLY_OF 58,666,958,815

STUDY_AT 59,758,459

WORK_AT 162,518,922

HAS_TYPE 16,080

IS_PART_OF 1,454

IS_SUBCLASS_OF 70

10

4 Benchmark workflow and implementation

Fig. 4.1 Tests and batches (power and throughput) executed in the BI workload’s workflow
(source: The LDBC Social Network Benchmark version 2.2.1)

In Fig.4, the benchmark consists of load data, power test and throughput test. The power
test, which runs a single power batch, first executes the write operations and then a
sequential execution of individual read query variants. The official benchmark requires 28
query variants x 30 substitution parameters = 840 read queries to be executed, but in this
benchmark, we executed 5 substitution parameters, and thus a total of 28 x 5 = 140
queries.

The throughput test consists of multiple throughput batches. The type and number of
operations in each throughput batch are the same as the power batch. The only difference
is that the throughput test allows the operations executed concurrently. In the current
implementation, the throughput batch is implemented in the same way as power batch
where the write and read operations are performed sequentially.

The implementation is the same as in the previous LDBC audited SF-1000 benchmark
except that the queries were executed on 5 substitution parameters instead of 30.

5 Validation of the Results
As mentioned in the SF-1000 benchmark, the implementation has been cross validated
against Neo4j on SF-10.

11

https://arxiv.org/pdf/2001.02299.pdf
https://ldbcouncil.org/benchmarks/snb/LDBC_SNB_BI_20221109_SF1000_tigergraph.pdf
https://ldbcouncil.org/benchmarks/snb/LDBC_SNB_BI_20221109_SF1000_tigergraph.pdf

6 Performance Results

Based on the Sec 7.5.4 Scoring Metrics in Specification, the power score, throughput score and
their price adjusted variants per-$ power score and per-$ throughput score are calculated. The
benchmark time shown in Table 6.1 indicates the total elapsed time for both the power and
throughput batch. The power score is calculated as

where is the time in second to perform the writes and , , … are the𝑤 = 8685. 72 𝑞
1
𝑞
2𝑎

𝑞
2𝑏

𝑞
20𝑏

time in second for executing each variant with 30 different substitution parameters. In this
benchmark, , , … are extrapolated by applying a factor of 6 to the time spent on 5𝑞

1
𝑞
2𝑎

𝑞
2𝑏

𝑞
20𝑏

substitution parameters (i.e., the sum column in Table 6.2).
The throughput score is calculated as

where is the load time and is 6hr 38min, is the number of throughput batch in𝑡
𝑙𝑜𝑎𝑑

𝑛
𝑏𝑎𝑡𝑐ℎ𝑒𝑠

= 1
this benchmark, is the time spent in a throughput batch with 30 substitution parameters𝑡

𝑏𝑎𝑡𝑐ℎ𝑒𝑠
and is 26 hr.

The price-adjusted score are
,𝑝𝑜𝑤𝑒𝑟@𝑆𝐹/$ = 𝑝𝑜𝑤𝑒𝑟@𝑆𝐹 × 1000

𝐶𝑜𝑠𝑡

,𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡@𝑆𝐹/$ = 𝑡ℎ𝑟𝑜𝑢𝑔ℎ𝑝𝑢𝑡@𝑆𝐹 × 1000
𝐶𝑜𝑠𝑡

where the Cost only includes the hardware cost, whereas the specification uses the total cost of
ownership (TCO) that includes both software and hardware cost.

Table 6.1: Summary of results for TigerGraph on scale factor 30000.
The benchmark time includes both the power batch (inserts/deletes+precompute+read)
and the throughput batch (inserts/deletes+precompute+read) elapsed time.

Benchmark time Power@SF Power@SF/$ Throughput@SF Throughput@SF/$

12.67 hr 60 068.58 8.13 20 027.19 2.71

12

https://arxiv.org/pdf/2001.02299v7.pdf

Table 6.2: Detailed power test results for TigerGraph on scale factor 30000. Execution times are
reported in seconds
​​

Query Sum Max. Min. Mean P50 P90 P95 P99

1 91.419 20.145 17.586 18.284 17.769 19.404 19.775 20.071
2a 577.132 168.779 59.311 115.426 131.607 158.465 163.622 167.748
2b 250.091 57.737 39.141 50.018 51.599 57.445 57.591 57.708
3 547.155 162.629 79.105 109.431 97.232 144.145 153.387 160.781
4 64.086 15.630 9.736 12.817 13.925 15.179 15.405 15.585
5 112.809 24.741 20.608 22.562 22.236 24.522 24.631 24.719
6 118.150 25.301 21.346 23.630 23.904 24.869 25.085 25.258
7 495.738 102.835 96.859 99.148 98.160 102.054 102.444 102.757
8a 176.702 38.936 30.831 35.340 35.599 38.227 38.581 38.865
8b 84.273 18.156 16.162 16.855 16.492 17.716 17.936 18.112
9 251.649 54.430 46.494 50.330 50.176 52.907 53.669 54.277
10a 619.945 145.280 97.929 123.989 135.119 141.789 143.535 144.931
10b 123.262 30.970 7.894 24.652 28.262 30.911 30.941 30.965
11 220.345 46.906 41.140 44.069 44.655 46.273 46.590 46.843
12 511.638 125.021 86.790 102.328 92.017 122.068 123.545 124.726
13 1,445.889 294.634 285.058 289.178 289.233 293.404 294.019 294.511
14a 932.480 195.364 170.451 186.496 189.445 193.948 194.656 195.223
14b 308.624 80.657 48.218 61.725 59.711 73.181 76.919 79.909
15a 844.558 174.921 164.657 168.912 165.789 174.635 174.778 174.892
15b 2,386.352 543.165 376.914 477.270 479.542 539.230 541.198 542.771
16a 732.495 174.636 101.264 146.499 164.669 173.634 174.135 174.536
16b 162.310 36.736 28.881 32.462 33.087 35.400 36.068 36.603
17 433.761 95.317 79.962 86.752 86.903 92.737 94.027 95.059
18 1,881.355 381.545 368.749 376.271 377.188 380.386 380.965 381.429
19a 275.493 55.997 54.100 55.099 55.112 55.915 55.956 55.989
19b 284.020 59.429 54.873 56.804 56.229 58.694 59.061 59.355
20a 29.544 15.383 2.213 5.909 3.789 11.483 13.433 14.993
20b 24.718 6.641 2.998 4.944 5.150 6.241 6.441 6.601

13

Table 6.3: Operations in the power test for TigerGraph on scale factor 30000. Execution times
are reported in seconds. ROOT_POST1 pre-computations are performed for each Comment
insertion and deletion operation. Therefore, they are reported as part of the writes.

Operation Time (hh:mm:ss) Time (seconds)

Total read time (5 runs) 3:53:06 13,986.090
Total write time 2:24:46 8,685.720
Precomputation for Q4 0:05:40 340.190
Precomputation for Q6 0:22:43 1,363.020
Precomputation for Q14 and Q19 1:23:16 4,995.530
Precomputation for Q20 0:05:35 335.410

7 Conclusion

The social network benchmark in this report demonstrates TigerGraph’s capability in graph
analytics and business intelligence on graph-structured data at tens of terabytes scale. The new
LDBC SNB BI workloads include the two challenges:

● Micro-batch of insert and delete operations to mutate the current graph
● Complex read queries that touch a significant portion of the data. The queries are

designed based on the choke points, such as the challenging aspects of query processing,
such as explosive and redundant multi-joins, expressive pathfinding, etc.

TigerGraph is capable of handling the deep-link OLAP style queries on this mutable big graph of
72.6 billion vertices and 539.6 billion edges, half of the data intensive read queries returning
results within 1 minute, and the other half spent from 1 minute to 8 minutes.

This benchmark experiment exhibits TigerGraph’s ability to deal with big graph workloads in a
real production environment, where 10s terabytes of connected data with daily or hourly
incremental updates is a norm. No other graph database or relational database vendor has
demonstrated equivalent analytical and operational capabilities on this large-scale updatable
graph to the best of our knowledge.

—————————————————
1In the precomputation phase, an auxiliary edge is added between each comment and its root Post. This edge
is called ROOT_POST

14

8 Acknowledgement

The cloud computing cost used in this benchmark is funded by AMD and is gratefully
acknowledged.

9 Supplemental Materials

A CPU and Memory Details

Listing A.1: Output of the cat /proc/cpuinfo command for a single CPU core

1 processor : 0
2 vendor_id : AuthenticAMD
3 cpu family : 25
4 model : 1
5 model name : AMD EPYC 7R13 Processor
6 stepping : 1
7 microcode : 0xa001173
8 cpu MHz : 1406.820
9 cache size : 512 KB
10 physical id : 0
11 siblings : 64
12 core id : 0
13 cpu cores : 32
14 apicid : 0
15 initial apicid : 0
16 fpu : yes
17 fpu_exception : yes
18 cpuid level : 16
19 wp : yes
20 flags : fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36

clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc rep_good nopl
xtopology nonstop_tsc cpuid extd_apicid aperfmperf tsc_known_freq pni pclmulqdq ssse3 fma cx16 pcid
sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm cmp_legacy cr8_legacy abm
sse4a misalignsse 3dnowprefetch topoext invpcid_single ssbd ibrs ibpb stibp vmmcall fsgsbase bmi1 avx2
smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni xsaveopt xsavec xgetbv1 clzero xsaveerptr
arat npt nrip_save vaes vpclmulqdq rdpid

21 bugs : sysret_ss_attrs spectre_v1 spectre_v2 spec_store_bypass
22 bogomips : 5299.96
23 TLB size : 2560 4K pages
24 clflush size : 64
25 cache_alignment : 64
26 address sizes : 48 bits physical, 48 bits virtual
27 power management:

15

Listing A.2: Output of the lscpu command

1 Architecture: x86_64
2 CPU op-mode(s): 32-bit, 64-bit
3 Byte Order: Little Endian
4 CPU(s): 128
5 On-line CPU(s) list: 0-127
6 Thread(s) per core: 2
7 Core(s) per socket: 32
8 Socket(s): 2
9 NUMA node(s): 4
10 Vendor ID: AuthenticAMD
11 CPU family: 25
12 Model: 1
13 Model name: AMD EPYC 7R13 Processor
14 Stepping: 1
15 CPU MHz: 3594.731
16 BogoMIPS: 5299.96
17 Hypervisor vendor: KVM
18 Virtualization type: full
19 L1d cache: 32K
20 L1i cache: 32K
21 L2 cache: 512K
22 L3 cache: 32768K
23 NUMA node0 CPU(s): 0-15,64-79
24 NUMA node1 CPU(s): 16-31,80-95
25 NUMA node2 CPU(s): 32-47,96-111
26 NUMA node3 CPU(s): 48-63,112-127
27 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat

pse36 clflush mmx fxsr sse sse2 ht syscall nx mmxext fxsr_opt pdpe1gb rdtscp lm constant_tsc
rep_good nopl xtopology nonstop_tsc cpuid extd_apicid aperfmperf tsc_known_freq pni pclmulqdq ssse3
fma cx16 pcid sse4_1 sse4_2 x2apic movbe popcnt aes xsave avx f16c rdrand hypervisor lahf_lm
cmp_legacy cr8_legacy abm sse4a misalignsse 3dnowprefetch topoext invpcid_single ssbd ibrs ibpb
stibp vmmcall fsgsbase bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb sha_ni
xsaveopt xsavec xgetbv1 clzero xsaveerptr arat npt nrip_save vaes vpclmulqdq rdpid

Listing A.3: Output of the cat /proc/meminfo command

1 MemTotal: 1034754828 kB
2 MemFree: 3290352 kB
3 MemAvailable: 545989372 kB
4 Buffers: 0 kB
5 Cached: 537348304 kB
6 SwapCached: 0 kB
7 Active: 486301272 kB
8 Inactive: 531443264 kB
9 Active(anon): 480445920 kB
10 Inactive(anon): 360728 kB
11 Active(file): 5855352 kB
12 Inactive(file): 531082536 kB
13 Unevictable: 0 kB
14 Mlocked: 0 kB
15 SwapTotal: 0 kB
16 SwapFree: 0 kB
17 Dirty: 573016 kB
18 Writeback: 0 kB
19 AnonPages: 480390744 kB

16

20 Mapped: 413680 kB
21 Shmem: 415188 kB
22 Slab: 11716932 kB
23 SReclaimable: 11314780 kB
24 SUnreclaim: 402152 kB
25 KernelStack: 72144 kB
26 PageTables: 1166284 kB
27 NFS_Unstable: 0 kB
28 Bounce: 0 kB
29 WritebackTmp: 0 kB
30 CommitLimit: 517377412 kB
31 Committed_AS: 30520388 kB
32 VmallocTotal: 34359738367 kB
33 VmallocUsed: 0 kB
34 VmallocChunk: 0 kB
35 HardwareCorrupted: 0 kB
36 AnonHugePages: 0 kB
37 ShmemHugePages: 0 kB
38 ShmemPmdMapped: 0 kB
39 HugePages_Total: 0
40 HugePages_Free: 0
41 HugePages_Rsvd: 0
42 HugePages_Surp: 0
43 Hugepagesize: 2048 kB
44 DirectMap4k: 593816 kB
45 DirectMap2M: 27299840 kB
46 DirectMap1G: 1023410176 kB

Listing A.4: Output of the lshw -C memory command

1 *-firmware
2 description: BIOS
3 vendor: Amazon EC2
4 physical id: 0
5 version: 1.0
6 date: 10/16/2017
7 size: 64KiB
8 capacity: 64KiB
9 capabilities: pci edd acpi virtualmachine
10 *-cache:0
11 description: L1 cache
12 physical id: 6
13 slot: L1 - Cache
14 size: 3MiB
15 capacity: 3MiB
16 clock: 1GHz (1.0ns)
17 capabilities: pipeline-burst internal write-back unified
18 configuration: level=1
19 *-cache:1
20 description: L2 cache
21 physical id: 7
22 slot: L2 - Cache
23 size: 24MiB
24 capacity: 24MiB
25 clock: 1GHz (1.0ns)
26 capabilities: pipeline-burst internal write-back unified
27 configuration: level=2
28 *-cache:2
29 description: L3 cache
30 physical id: 8
31 slot: L3 - Cache

17

32 size: 192MiB
33 capacity: 192MiB
34 clock: 1GHz (1.0ns)
35 capabilities: pipeline-burst internal write-back unified
36 configuration: level=3
37 *-cache:0
38 description: L1 cache
39 physical id: 9
40 slot: L1 - Cache
41 size: 3MiB
42 capacity: 3MiB
43 clock: 1GHz (1.0ns)
44 capabilities: pipeline-burst internal write-back unified
45 configuration: level=1
46 *-cache:1
47 description: L2 cache
48 physical id: a
49 slot: L2 - Cache
50 size: 24MiB
51 capacity: 24MiB
52 clock: 1GHz (1.0ns)
53 capabilities: pipeline-burst internal write-back unified
54 configuration: level=2
55 *-cache:2
56 description: L3 cache
57 physical id: b
58 slot: L3 - Cache
59 size: 192MiB
60 capacity: 192MiB
61 clock: 1GHz (1.0ns)
62 capabilities: pipeline-burst internal write-back unified
63 configuration: level=3
64 *-memory
65 description: System Memory
66 physical id: c
67 slot: System board or motherboard
68 size: 1TiB
69 *-bank:0
70 description: DIMM DDR4 Static column Pseudo-static Synchronous Window DRAM 3200 MHz

(0.3 ns)
71 physical id: 0
72 size: 256GiB
73 width: 64 bits
74 clock: 3200MHz (0.3ns)
75 *-bank:1
76 description: DIMM DDR4 Static column Pseudo-static Synchronous Window DRAM 3200 MHz

(0.3 ns)
77 physical id: 1
78 size: 256GiB
79 width: 64 bits
80 clock: 3200MHz (0.3ns)
81 *-bank:2
82 description: DIMM DDR4 Static column Pseudo-static Synchronous Window DRAM 3200 MHz

(0.3 ns)
83 physical id: 2
84 size: 256GiB
85 width: 64 bits
86 clock: 3200MHz (0.3ns)
87 *-bank:3
88 description: DIMM DDR4 Static column Pseudo-static Synchronous Window DRAM 3200 MHz

(0.3 ns)
89 physical id: 3
90 size: 256GiB
91 width: 64 bits
92 clock: 3200MHz (0.3ns)

18

B IO Performance
Listing B.1: Output of the fio command

1 read_iops_test: (g=0): rw=randread, bs=4K-4K/4K-4K/4K-4K, ioengine=libaio,
iodepth=256

2 fio-2.14
3 Starting 1 process
4 read_iops_test: Laying out IO file(s) (1 file(s) / 102400MB)
5 read_iops_test: (groupid=0, jobs=1): err= 0: pid=5191: Wed Nov 30 08:49:27 2022
6 read : io=2781.7MB, bw=47468KB/s, iops=11862, runt= 60006msec
7 slat (usec): min=1, max=4610, avg=81.47, stdev=204.32
8 clat (usec): min=4788, max=28613, avg=21492.19, stdev=345.41
9 lat (usec): min=5273, max=28615, avg=21574.97, stdev=346.36
10 clat percentiles (usec):
11 | 1.00th=[20864], 5.00th=[21120], 10.00th=[21120], 20.00th=[21120],
12 | 30.00th=[21376], 40.00th=[21376], 50.00th=[21376], 60.00th=[21632],
13 | 70.00th=[21632], 80.00th=[21632], 90.00th=[21888], 95.00th=[21888],
14 | 99.00th=[22144], 99.50th=[22400], 99.90th=[23168], 99.95th=[24192],
15 | 99.99th=[25984]
16 lat (msec) : 10=0.01%, 20=0.05%, 50=99.98%
17 cpu : usr=1.59%, sys=4.18%, ctx=97147, majf=0, minf=1
18 IO depths : 1=0.1%, 2=0.1%, 4=0.1%, 8=0.1%, 16=0.1%, 32=0.1%, >=64=105.0%
19 submit : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%, >=64=0.0%
20 complete : 0=0.0%, 4=100.0%, 8=0.0%, 16=0.0%, 32=0.0%, 64=0.0%, >=64=0.1%
21 issued : total=r=711841/w=0/d=0, short=r=0/w=0/d=0, drop=r=0/w=0/d=0
22 latency : target=0, window=0, percentile=100.00%, depth=256
23 Run status group 0 (all jobs):
24 READ: io=2781.7MB, aggrb=47468KB/s, minb=47468KB/s, maxb=47468KB/s,

mint=60006msec, maxt=60006msec
25 Disk stats (read/write):
26 nvme0n1: ios=747241/9058, merge=0/378, ticks=3690012/62044, in_queue=3680220,

util=100.00%

19

C Dataset Generation Instructions

The datasets can be generated using the LDBC SNB Datagen. To regenerate the data sets
used in this benchmark, build the Datagen JAR as described in the project’s README,
configure the AWS EMR environment, upload the JAR to the S3 bucket (denoted as
${BUCKET_NAME}) and run the following commands to generate the datasets used in this audit.

Note that while the datasets for TigerGraph were generated as gzip-compressed archives,
they are decompressed during preprocessing. Decompressing the SF30000 data set took
1hr27min when performed by the following command: find /data/sf30000 -name "*.csv.gz"

-print0 | parallel -q0 gunzip

Listing C.1: Script to generate the SF30000 dataset for TigerGraph in AWS EMR. This dataset is
used for the benchmark run

1 export SCALE_FACTOR=30000
2 export JOB_NAME=sf${SCALE_FACTOR}-projected-csv-gz
3
4 ./tools/emr/submit_datagen_job.py \
5 --use-spot \
6 --bucket ${BUCKET_NAME} \
7 --copy-all \
8 --az us-east-2c \
9 ${JOB_NAME} \
10 ${SCALE_FACTOR} \
11 csv \
12 bi \
13 -- \
14 --explode-edges \
15 --format-options compression=gzip \
16 --generate-factors

20

D Data Schema

Listing D.1: Content of the GSQL schema used by TigerGraph

1 ## Message

2 CREATE VERTEX Comment (PRIMARY_ID id UINT, creationDate INT, locationIP STRING, browserUsed STRING,

content

STRING, length UINT) WITH primary_id_as_attribute="TRUE"

3 CREATE VERTEX Post (PRIMARY_ID id UINT, imageFile STRING, creationDate INT, locationIP STRING, browserUsed

STRING

, language STRING, content STRING, length UINT) WITH primary_id_as_attribute="TRUE"

4 ## organisation

5 CREATE VERTEX Company (PRIMARY_ID id UINT, name STRING, url STRING) WITH primary_id_as_attribute="TRUE"

6 CREATE VERTEX University (PRIMARY_ID id UINT, name STRING, url STRING) WITH primary_id_as_attribute="TRUE"

7 ## place

8 CREATE VERTEX City (PRIMARY_ID id UINT, name STRING, url STRING) WITH primary_id_as_attribute="TRUE"

9 CREATE VERTEX Country (PRIMARY_ID id UINT, name STRING, url STRING) WITH primary_id_as_attribute="TRUE"

10 CREATE VERTEX Continent (PRIMARY_ID id UINT, name STRING, url STRING) WITH primary_id_as_attribute="TRUE"

11 ## etc

12 CREATE VERTEX Forum (PRIMARY_ID id UINT, title STRING, creationDate INT,

13 maxMember UINT) WITH primary_id_as_attribute="TRUE" // maxMember is for precompute in BI-4

14 CREATE VERTEX Person (PRIMARY_ID id UINT, firstName STRING, lastName STRING, gender STRING,

birthday INT, creationDate INT, locationIP STRING, browserUsed STRING, speaks SET<STRING>,

email SET<STRING>,

15 popularityScore UINT) WITH primary_id_as_attribute="TRUE" // popularityScore is for precompute in BI-6

16 CREATE VERTEX Tag (PRIMARY_ID id UINT, name STRING, url STRING) WITH primary_id_as_attribute="TRUE"

17 CREATE VERTEX TagClass (PRIMARY_ID id UINT, name STRING, url STRING) WITH primary_id_as_attribute="TRUE"

18

19

20 # create edge

21 CREATE DIRECTED EDGE CONTAINER_OF (FROM Forum, TO Post) WITH REVERSE_EDGE="CONTAINER_OF_REVERSE"

22 CREATE DIRECTED EDGE HAS_CREATOR (FROM Comment|Post, TO Person) WITH REVERSE_EDGE="HAS_CREATOR_REVERSE"

23 CREATE DIRECTED EDGE HAS_INTEREST (FROM Person, TO Tag) WITH REVERSE_EDGE="HAS_INTEREST_REVERSE"

24 CREATE DIRECTED EDGE HAS_MEMBER (FROM Forum, TO Person, creationDate INT) WITH

REVERSE_EDGE="HAS_MEMBER_REVERSE"

25 CREATE DIRECTED EDGE HAS_MODERATOR (FROM Forum, TO Person) WITH REVERSE_EDGE="HAS_MODERATOR_REVERSE"

26 CREATE DIRECTED EDGE HAS_TAG (FROM Comment|Post|Forum, TO Tag) WITH REVERSE_EDGE="HAS_TAG_REVERSE"

27 CREATE DIRECTED EDGE HAS_TYPE (FROM Tag, TO TagClass) WITH REVERSE_EDGE="HAS_TYPE_REVERSE"

28 CREATE DIRECTED EDGE IS_LOCATED_IN (FROM Company, TO Country | FROM Person, TO City | FROM University, TO

City)

WITH REVERSE_EDGE="IS_LOCATED_IN_REVERSE"

29 CREATE DIRECTED EDGE MESG_LOCATED_IN (FROM Comment, TO Country | FROM Post, TO Country) //

Reverse edge of Comment/Post -IS_Located_IN-> Country will cause Country connected by too

many edges, which makes loading slow

30 CREATE DIRECTED EDGE IS_PART_OF (FROM City, TO Country | FROM Country, TO Continent) WITH REVERSE_EDGE="

IS_PART_OF_REVERSE"

31 CREATE DIRECTED EDGE IS_SUBCLASS_OF (FROM TagClass, TO TagClass) WITH

REVERSE_EDGE="IS_SUBCLASS_OF_REVERSE"

21

32 CREATE UNDIRECTED EDGE KNOWS (FROM Person, TO Person, creationDate INT, weight19 UINT, weight20 UINT

DEFAULT

10000)

33 CREATE DIRECTED EDGE LIKES (FROM Person, TO Comment|Post, creationDate INT) WITH

REVERSE_EDGE="LIKES_REVERSE"

34 CREATE DIRECTED EDGE REPLY_OF (FROM Comment, TO Comment|Post) WITH REVERSE_EDGE="REPLY_OF_REVERSE"

35 CREATE DIRECTED EDGE STUDY_AT (FROM Person, TO University, classYear INT) WITH

REVERSE_EDGE="STUDY_AT_REVERSE"

36 CREATE DIRECTED EDGE WORK_AT (FROM Person, TO Company, workFrom INT) WITH REVERSE_EDGE="WORK_AT_REVERSE"

37

38 CREATE DIRECTED EDGE ROOT_POST (FROM Comment, TO Post) WITH REVERSE_EDGE="ROOT_POST_REVERSE" //FOR

BI-3,9,17

39 CREATE DIRECTED EDGE REPLY_COUNT (FROM Person, TO Person, cnt UINT)

40

41 CREATE GLOBAL SCHEMA_CHANGE JOB addIndex {

42 ALTER VERTEX Country ADD INDEX country_name ON (name);

43 ALTER VERTEX Company ADD INDEX company_name ON (name);

44 ALTER VERTEX University ADD INDEX university_name ON (name);

45 ALTER VERTEX Tag ADD INDEX tag_name ON (name);

46 ALTER VERTEX TagClass ADD INDEX tagclass_name ON (name);

47 RUN GLOBAL SCHEMA_CHANGE JOB addIndex

48 CREATE GRAPH ldbc_snb (*)

22

